用户名: 密码: 验证码:
底水砂岩油藏矢量化井网研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代油藏精细描述技术的发展,使得我们能更深入地认识油藏;复杂井技术的不断应用,使传统的井网部署方法发生变化。传统的面积井网理论已不适合现代油田开发技术的发展。为此刘德华等人于2004年提出以油藏描述为基础,最大限度控制储量为前提,提高单井效益为目的的矢量化井网的概念。矢量化井网是建立在地质矢量化之上的一种综合布井方式,综合考虑多种因素后达到合理开发油藏的目的。随着水平井开发的进一步广泛应用,针对水平井的矢量化井网研究变得更加重要,矢量化井网这一概念提出时,包含了水平井与地质情况相适应性,但水平井水平段合理延伸方向、水平井最佳井排方向等问题及其如何在具体油藏中结合实际各种地质因素,都是亟待解决的问题。
     井网矢量与地质矢量的协调是矢量井网设计的基本原则。对于底水砂岩油藏,矢量化井网部署应立足于油藏的构造形态、沉积过程中的物源方向和油藏非均质性,合理设计水平井段方向和水平井井排方向,并且应考虑水平井最佳避水高度以及对于油藏中不同井型的合理选择。本文以油藏精细描述为基础,结合塔河一区的实际地质情况,建立了考虑不同因素的理想模型,量化地讨论不同因素对水平段方向及水平井井排方向的影响,研究了矢量化井网中最佳水平段方向和最佳水平井井排方向。
     在底水砂岩油藏实际开发中,避水高度是影响底水锥进速度和无水采油期的重要因素之一,通过计算不同底水能量的理想地质模型,认为水平井段应该尽量靠近油藏上部;在获得同等经济效益的情况下选择合理的井型有利于减少油藏的开发投资,通过对比分析塔河一区油藏地质情况类似的水平井和直井的生产动态特征,认为合理的井型选择应该结合塔河一区构造特征。
     文中对矢量化井网部署中应考虑的因素及其对井网的影响做了量化的研究和相关讨论,还需要结合实际油藏对此进行一定验证。通过对塔河一区的矢量化井网及现有井网与矢量化井网对比,发现在同样的投资条件下,矢量化井网有助于控制含水上升和提高采出程度,相对于塔河一区现有井网,矢量化井网更能提高经济效益;塔河一区目前井网控制程度不足,在下步井网部署中应结合矢量化井网部署方法进行调整,本文结合矢量化井网部署原则,针对塔河一区目前的开发情况,设计了一套下步井网调整方案,通过数值模拟预测,认为采用矢量化井网进行下步井网调整可以获得较好的效益。
Development of Modern Detailed Reservoir Description technology has enabled us to understand the reservoir better. The traditional arrangements of well patterns have changed with the application of complex wells technology. The traditional well pattern theory is not suitable for development of modern oil field exploitation technology. For this reason Liu-Dehua and others proposed the concept of vector pattern of well-net in 2004 which is based on reservoir description, the premise of maximum control of reserves, and is for the purpose of improving single oil well production. Vector well pattern is an integrated well spacing method based on the geological vector, of which purpose is to determine reasonable development mode in consideration with various factors. With the wide use of horizontal wells for oil and gas development, the study of vector well pattern for horizontal wells have become more and more important. When the concept of vector well pattern was firstly introduced, the horizontal well and the geological situation ought to be both considered about. But the logical extension of horizontal direction in horizontal wells, best direction of horizontal wells row and the combination of the various geological factors in specific reservoirs are problems that need to be answered.
     Coordination of well vector and geological vector is the basic principles of vectorial well design. For sandstone oil reservoir with bottom-water, the deployment of vector wells should be based on reservoir structure and morphology, sediment source direction in the process and reservoir heterogeneity, the direction of horizontal-section well and horizontal wells arrangement should be reasonably designed, and the best standoff of horizontal wells should been carefully considered as well as the rational choice for different types of wells in reservoir be made. In this paper on the basis of detailed reservoir description and in combined with the actual geological conditions of 1st Block of Tahe Oilfield, an ideal model is established considering with various factors, quantitative discussions of the different factors affecting the direction of horizontal-section well and horizontal well array are made, and the best direction of horizontal-section well and horizontal well array of vectorial wells are determined.
     In the actual development of sandstone oil reservoir with bottom-water standoff, the height of water avoidance is one of the important factors to affect the velocity of bottom water coning and water-free production period. According to the calculation of ideal geological model with different bottom water energy, the result shows that the horizontal well should be as close as possible to the upper reservoir. The reasonable selection of well-type is conducive to reduce reservoir development investment under the circumstances of obtaining equal economic benefits. Through a comparative analysis on production performance of horizontal and vertical wells in 1st Block of Tahe oilfield with similar reservoir geology situation, it is believed that reasonable well-type selection should be considered with the actual construction of 1st Block of Tahe Oilfield.
     The quantified research and related discussions are made about factors that need to be considered in vectorial well arrangement and their impacts on well-net, and the conclusions need to be verified by specific reservoirs. Through design of vector well-net and contrast between existing well-net and vector well-net in 1st Block of Tahe Oilfield, we have found that under the same investment conditions, vector well-net helps to control water-content rise and increase recovery percent, that is, vector wells enhance economic performance better than the existing well-net in 1st Block of Tahe Oilfield. Now control degree of well-net in 1st Block of Tahe Oilfield is not sufficient, so in the next step well-net arrangement should be conducted with vectorial well arrangement methods. In this paper integrated the principle of vectorial well arrangement, a next-step well-net adjustment program is designed. According to numerical simulation prediction results, it is believed that the use of Vector Well-net helps to achieve better beneficial results in next-step well-net adjustment.
引文
[1]刘德华,李士伦,吴军.矢量化井网的概念及布井方法初探[J].江汉石油学院学报. 2004. 26 (4): 110~111.
    [2]李阳.低渗透油藏矢量井网设计与整体压裂优化研究[J].石油大学学报(自然科学版).2005.29(6):53-56
    [3]陈焕杰,廖锐全,刘捷等.矢量化井网设计方法探讨[J].石油天然气学报.2006.28(5):88-90.
    [4]李阳,王端平,李传亮.各向异性油藏的矢量井网[J].石油勘探与开发.2006.33(2):225-227
    [5]吕爱民,姚军,范海军等.海上油田矢量井网研究初探[J].油气地质与采收率. 2007. 14(3):80-83.
    [6]周涌沂,李阳,王端平.矢量井网改善平面非均质油藏水驱开发效果研究[J].岩土力学.2008.29(1):135-139.
    [7]刘月田.各向异性油藏水平井开发井网设计方法[J].石油勘探与开发.2008.35(5):619– 624.
    [8]马立文,关云东,韩沛荣.裂缝性低渗透砂岩油田井网调整实践与认识[J].大庆石油地质与开发, 2000,19(3):11-14.
    [9]丁云宏,曾斌.渗透率各向异性的低渗透油藏开发井网研究[J].石油学报,2002,23(2):64-67.
    [10]刘月田.各向异性油藏注水开发布井理论与方法[J].石油勘探与开发,2005,32(5):101-104.
    [11]凌宗发,胡永乐,李保柱,等.水平井注采井网优化[J].石油勘探与开发,2007,34(1):65-72.
    [12] Gatens JM, LeeW J. The effects of permeability anisotropy on the evaluation and design of hydraulic fracture treatments and well performance[A]. SPE 21501, 1991. 211-222.
    [13]闫宝珍,许卫,陈莉等.非均质渗透率油藏井网模型选择[J].石油勘探与开发.1998.25(6):51-53.
    [14]刘显太.胜利油区水平井开发技术[J].油田地质与采收率.2002.9(3):45.
    [15]黄伟.水平井技术在小构造油藏挖潜中的应用[J].断块油气藏.2005.12(1):45-60.
    [16]秦雪辉.水平井技术在边底水油藏中的应用[J].江汉石油科技.2008.18(1):27-30.
    [17]周浪,李海涛.底水油藏中水平井分段射孔和打开程度的优化设计[J].重庆科技学院学报(自然科学版).2009.11(1):32-34.
    [18]高宝国,徐福刚,信德发.水平井技术在太平边底水稠油油藏的应用[J].断块油气田.2009.16(1):86-88
    [19]王家禄,刘玉章,江如意,等.水平井开采底水油藏水脊脊进规律的物理模拟[J].石油勘探与开发.2007.34(5):590-593.
    [20]熊有全,刘明国,时国林,等.中原油田水平井技术应用及发展方向[J].断块油气田,2002,9(3):68-71.
    [21]王青,吴晓东,刘根新等.水平井开采底水油藏采水控锥方法研究[J].石油勘探与开发2005.32(1) :109-111
    [22]喻高明,凌建军,蒋明煊,砂岩底水油藏底水锥进影响因素研究[J].江汉石油学院学报.1996.18(3):59-62.
    [23]刘良跃,岳江河,熊友明,等.水平井底水锥进临界产量计算[J].西南石油学院报.2001. 23(5):35-37.
    [24]陈志海.底水油藏的水平井开发[J].石油与天然气地质.2000.21(3):214-219.
    [25]窦宏恩.水平井开采底水油藏临界产量的计算[J].石油钻采工艺.1997.19(3):70-75
    [26] P Papatzaeos, etal. Cone Breakthrough Time for Horizontal Wells[J]. SPEl9822,1989.
    [27] BoyunGuo,etal.Determination of the Maximum Water一Free Produetion Rate of a Horizontal Well with Water/0i1 Interface Cresting[J] . SPE24324,1992
    [28]万仁溥.中国不同类型油藏水平井开采技术[M].北京:石油工业出版社,1997
    [29] Pettijohn F J.砂和砂岩[M].李汉瑜(译).北京:科学出版社,1977. 71-72. (Pettijohn F J. Sand and Sandstone[M]. LIHan-yu(Trans. ). Beijing: Science Press, 1977.
    [30]郑俊德,高朝阳,石成方,等.水平井水淹机理数值模拟研究[J]石油学报,2006,27(5):99-10.
    [31] Joshi S D.Augmentation of Well Production with Slant and Horizontl Wells[R].SPE 15375 1988
    [32]张枫,李治平,董萍等.水平井整体开发井网研究——以大港油区关家堡油田为例[J].天然气地球科学.2007.18(4):621-625
    [33]王家宏.中国水平井应用实例分析[M].北京:石油工业出版社,2003
    [34]瞿晓文,常象.临盘油田临二断块馆陶组储层非均质性研究[J].Natural Science,2007(26):11-15.
    [35] Christman R.C.Modeling the Efforts of Infill Drilling and Pattern Modfication in Discontinuous Reservoirs.SPE27747. 1995
    [36]郭建华等.阿克库勒地区三叠系层序地层学及储集砂体成因类型[J].沉积学报,2007(25):169-176.
    [37]李桂荣,巢阳.塔河油田三叠系油藏特征分析[J].石油物探,2004(43):407-409.
    [38] Hoyland LA, Papatzacos P, and Skjaeveland SM. Critical Rate for Water Coning:Correlation and Analytical Solution [ J ].SPERE 15855.1989(11)495.
    [39]康立功.塔河油田2区三叠系油藏类型初步探讨[J].安徽地质,2008(18):20-25.
    [40]朱美衡等.阿克库勒地区三叠系层序地层及对储集砂体的控制作用[J].西安石油大学学报,2007(22):1-6.
    [41]石玉,李宗杰.塔河油田三叠系岩性圈闭识别与评价技术[J].新疆石油地质,2007(38):375-378.
    [42]匡建超,张哨楠.塔河1号油田三叠系下油组储层早期开发地质特征研究[J].钻采工艺,2007, 30(4): 72-74.
    [43] Collings R.C. , Hild G.P.Abidi H.R. Pattern Modification by Injection Well Shut-in; A Combined Cost Reduction and Sweep Improvement Effort. SPE30736. 1996
    [44]计雄飞等.塔里木盆地阿克库勒地区断裂演化与油气关系[J].内蒙古石油化工,2007(7):142-145.
    [45] Schols RS. An Empirical Formula for the Critical Oil Production Rate[J]. Erdoel-Erdgas 1972(1) 6-11.
    [46]周文斌,旷理雄.塔里木盆地阿克库勒凸起于奇探区三叠系油气成藏条件与成藏模式[J].天然气地球科学,2007(28):667-672.
    [47]曾联波.岩层非均质性对裂缝发育的影响研究[J].自然科学进展,2008(18):216-220.
    [48]杨海军等.塔里木盆地轮南低凸起断裂系统与复式油气聚集[J].地质科学. 2007 (42) :795-811.
    [49]刘林玉等.鄂尔多斯盆地西峰地区长8砂岩微观非均质性的实验分析[J].岩矿测试,2008(27):29-32.
    [50] ThieleM R,BatyckyR P,BluntM J.A stream linebased 3D field-scale compositional reservoir simulator[C].SPE38889,1997:471-482.
    [51]孙龙德等.塔里木盆地石油地质研究新进展和油气勘探主攻方向[J].地质科学,2005(40):165-178.
    [52]郭建华等.塔里木盆地阿克库勒凸起西缘东河砂岩储集物性非均质性研究[J].沉积学报,2005(23):406-411.
    [53]孙来喜等.利用试井资料描述塔河裂隙油藏储层非均质特征[J].西安石油大学学报,2007(22):142-145.
    [54]付国民等.塔河油田9区三叠系中上统高分辨率层序地层及沉积演化[J].兰州大学学报,2007(43):13-17.
    [55]罗南.廖光明.储层非均质研究及应用[J].小型油气藏,2004(12):42-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700