用户名: 密码: 验证码:
微细螺旋孔电解加工成型仿真技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源问题已经成为制约国家经济社会发展的重要因素之一,通过技术进步开发高效节能的换热器、冷凝器、预热器是解决能源问题的有效途径之一。冷却系统中,肋化内冷却通道的设计可以达到提高热交换、改善冷却效果的目的,因而得到广泛重视,成为当前的研究热点。螺旋冷却孔是肋化通道的一种形式,热交换效果优越。然而对于孔径尺寸在2mm以下的螺旋冷却孔,采用常用机械加工方法难以实现。电解加工法由于其特有的属性,可以用于微小孔内壁结构的加工。由于微细电解加工工艺实验、装备设计、工具电极设计等需要花费较多的时间,不利于应用推广,利用仿真技术可以在计算机上实现模拟电解加工过程,对工件加工形态、阴极形状进行预测,准确分析加工过程的影响因素,加工准备时间大为缩短。论文在分析电解加工原理的基础上,分析了微细螺旋孔电解加工的成型规律,建立成型规律数学模型,在此基础上采用MATLAB软件对成型过程进行模拟仿真,并在搭建的实验加工平台上进行了螺旋孔电解加工实验研究,并以此来验证模型的合理性。研究同时开发出了加工过程的可视化人机交互平台,实现了工件蚀除过程的三维形态显示,对不同加工参数下的电解加工结果、给定加工目标下的初始参数选择进行了预测。
     论文的主要研究工作和研究成果如下:
     1.从电解加工过程中阳极蚀除规律出发,在MATLAB软件环境下建立孔径2mm以内的螺旋孔电解加工仿真模型。
     2.建立了人机交互式的电解加工成型过程分析系统,并可以对加工目标(加工深度0-0.5mm)下的加工参数进行反求分析。
     3.采用掩膜紫外光固化技术研制出螺旋工具电极,研制搭建了螺旋孔电解加工的实验平台。
     4.采用一种非接触式测量方法,方便、准确提取了实验数据,并采用数值计算方法验证了仿真模型。
     论文研究给电解加工实验提供了辅助参考,提高了实验研究的进程。
Energy resources, which are affinitive to economic security and national security, are one of the prominent restraining factors of China’s economic and social development. Through technological progress to exploit Heat exchanger、Condenser、pre-heater which is Energy efficient is the essential approach to solve the energy problem. The blade-cooling system of modern gas turbines is designed as the rib-turbulators cooling passages, which can significantly ameliorate the cooling effect through improving the heat change. So people pay high attention to it and also make a lot of researches on it. The spiral cooling hole is one form of rib-turbulators cooling passage which has a good heat change effect. The general processing method is limited as it is hard to process the micro-spiral hole aperture size is less than 2mm. So the electro-chemical machining technology is used in the processing of micro-spiral holes inwall because of its peculiar attribute. Usually, much time is necessary in equipment designed and cathode designed in micro ECM process. Simulation technology on computer in ECM can decrease research time. In this article, according to the basic principle of electro-chemical machining, we analyze the shaping law of micro-spiral hole use electro-chemical machining, and establish the math model of shaping law then we can use MATLAB to simulation the shaping process, and then we test the model’s rationality with take the experiment of micro-spiral hole by electro-chemical machining in the experimental processing platform. The research Developed the Visual interaction platform for the process to take three-dimensional shape display of Workpiece removal in the process, then forecast electro-chemical machining result of different process parameter and choose initial parameters under have the Given target.
     The main tasks and achievements are presented as follows:
     1. Establishing Electro-chemical machining model of spiral hole aperture size is less than 2mm under MATLAB software environment.
     2. According to the simulation model, we simulate the processing of electro-chemical machining under different parameters and analyses the processing parameter.
     3. The development of experiment equipment of electro-chemical machining for spiral in use of shaped electrode.
     4. The spiral electrode was prepared by using ultraviolet mask. The electro-chemical machining experiment is made out successfully and has tested the simulation model.
     The research provides a secondary reference on the process of ECM experiment and improves experimental research of ECM.
引文
[1]钱颂文等.管式换热器强化传热技术[M],北京:化学工业出版社,2003.
    [2] Schiele R, Wittig S. Gas turbine heat transfer: past and future challenges[J]. ASME journal of propulsion and power, 2000, 16: 583-589.
    [3]刘大响,程荣辉,世界航空动力技术的现状及发展动向[J].北京航空航天大学学报, 2002, 28(5): 490-496.
    [4] Paisarn Naphon, Manachai Nuchjapo, Jutarat Kurujareon.Tube side heat transfer coefficient and friction factor characteristics of horizontal tubes with helical rib[J]. Energy Conversion and Management, 2006,47, 3031–3044.
    [5] Chang S W, Su L M, Yang T L. Enhanced Heat Transfer with Full Circumferential Ribs in Helical Pipe[J]. J. of Thermal Science 2002.ll (3): 241-248.
    [6] Pedro G V, Alberto G, Antonio V. Experimental study of mixed convection and pressure drop in helically dimpled tubes for laminar and transition flow[J]. International Journal of Heat and Mass Transfer, 2002(45): 5091–5105.
    [7] Liang C, Papadakis G. Large eddy simulation of cross-flow through a staggered tube bundle at subcritical Reynolds number[J]. Journal of Fluids and Structures,2007, 23: 1215–1230.
    [8] Ridouane E H, Antonio C. Heat transfer and pressure drop characteristics of laminar air flows moving in a parallel-plate channel with transverse hemi-cylindrical cavities[J]. International Journal of Heat and Mass Transfer, 2007 (50): 3913–3924.
    [9] Won S Y, Ligrani P M. Numerical predictions of flow structure and local Nusselt number ratios along and above dimpled surfaces with different dimple depths in a channel[J], Num. Heat Transfer,2004, 46, 549–570.
    [10]李隆键,崔文智,辛明道.螺旋管内单相及沸腾的强化换热与阻力特性实验[J],核动力工程, 2005, 26(1):6-10.
    [11] Han Je-Chin, Sandip D. Recent developments in Turbine Blade Internal Cooling. New York Academy of Sciences[J]. Journal of Membrane Science,2001, 5: 162-178.
    [12]陈伦军,李刚,赵万生.微细特种加工的最新研究进展[J].电加工与模具, 2006, (3): 24-28.
    [13] Janssen J W. New horizons for STEM drilling[N]. SME Technical Paper, 1989:89–818.
    [14] Shaw J S, Falls H, Fleck J N. Striated cooling hole[P]. US patent:No.6254347.
    [15] Hiroyuki S, Shohei N, Masahisa C. Electrochemical curved hole machining with electrode posture control system[J]. Transactions of the Japan Society of Mechanical Engineers, 2007, 73(9): 619-2624.
    [16] Mineta T. Basic characteristics of an electrochemical etching of Ni-Fe containing corrosion resistant alloys[J]. Sensors and Actuators A, 2004, 114: 536–542.
    [17] Noot M J, Telea A. C, Jansen J K M etc. Numerical Analysis of Turbine Blade Cooling Ducts[J]. Mathematical and Computer Modelling, 2000, 31: 77-98.
    [18] Datta M. Microfabrication by ElectrochemicalMetal Removal[J]. IBM Journal of Research and Development, 1998, 425: 655-669.
    [19] Rolf S, Viola K. Philippe Allongue[J]. Electrochemical Micromachining. Science, 2000, 298(7):98-100.
    [20] Kurita T, Kunio Chikamori, Shinichirou Kubota. A study of three-dimensional shape machining with an ECμM system[J]. International Journal of Machine Tools & Manufacture, 2006, 46 (12-13): 1311-1318
    [21] Kim B H, Na C W, Lee Y S. Micro Electrochemical Machining of 3D Micro Structure Using Dilute Sulfuric Acid[J]. CIRP Annals - Manufacturing Technology, 2005, 54(1): 191-194.
    [22]朱荻,王明环,明平美等.微细电化学加工技术[J].纳米技术与精密工程, 2005, 3(2): 151-155.
    [23] Zhao W S, Li X H, Wang Z L. Study on Micro Electrochemical Machining at Micro to Meso-scale[C]. Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2006: 18-21.
    [24]李小海,王振龙,赵万生.基于多功能加工平台的微细电解加工工艺[J].上海交通大学学报, 2006,40 (6): 909-914.
    [25]施文轩,张明歧,殷旻.电液束加工工艺的研究及其发展[J].航空制造技术, 2001, 6: 25-27.
    [26] Jiang L M, Liu Z F, Tang J, Tian Z W. Three-dimensional micro-fabrication on copper and nickel[J]. Journal of Electroanalytical Chemistry, 2005, 581: 153–158.
    [27]王建业,张永俊,余艳青.脉冲电解加工技术在精微加工领域中的新发展[J].中国机械工程, 2007, 1: 114-119.
    [28]柴牧舟,郭钟宁,刘江文.螺旋电极电化学机械复合抛光的试验研究[J].电加工与模具, 2007,3: 55-58.
    [29]王明环,朱荻,张朝阳.航空发动机叶片竹节孔加工及传热分析[J].机械科学与技术, 2006, 25(11): 1346-1350.
    [30]王明环.微细电解加工实验研究[D]. 2007.
    [31] Shou S H, Ying J H. Heat Transfer Coefficients in an Orthogonally Rotating Duct With Turbulators[J]. ASME, Journal of Heat Transfer, 1995, (117): 69-78.
    [32] Rau G, Cakan M, Moeller D etc. The Effect of Periodic Ribs on the Local Aerodynamic and Heat Transfer Performance of a Straight Cooling Channel[J], ASME, Journal of Turbomachinery, 1998( 120):368-375.
    [33] Robert K, Sadanari M, Akira M. Effect of Rib Arrange-ments on Heat Transfer and Flow Behavior in a Rectangular Rib-Rough-ened Passage. Application to Cooling of Gas Turbine Blade Trailing Edge[J]. ASME, Journal of Heat Transfer, 2001, 123: 675-681.
    [34] Liou T M, Chen M Y, Tsai M H. Fluid Flow and HeatTransfer in a Rotating Two-Pass Square Duct With In-Line 90-deg Ribs[J]. ASME, Journal of Turbomachinery, 2002, 124: 260-268.
    [35] Taslim M E, kong A. 45 deg Staggered Rib Heat Transfer Coeffi-cients in a Square Channel [J]. ASME, Journal of Turbomachinery, 1998, 120: 571-580.
    [36] Koroky G J, Taslim M E. Rib Heat Transfer Coefficient Measurements in a Rib-Roughened Square Passage[J]. ASME, Journal of Turbomachinery, 1998, 120: 376-385.
    [37]顾维藻,涂建平,刘文艳等.燃气轮机涡轮叶片冷却通道内的流动与传热研究[J].工程物理学报, 1996, 17(3): 323-328.
    [38]刘湘云,丁水汀,陶智等.不同肋间距变截面回转通道内的流阻和换热特性[J],航空动力学报, 2004, 19(5): 640-645.
    [39]邱庆刚,沈胜强.仿螺旋肋片内冷通道流动与传热数值分析[J].热科学与技术, 2005, 4(4): 292-297.
    [40]范植坚,李新忠,王天诚等.电解加工与复合电解加工[M],第一版.北京:国防工业出版社, 2008
    [41]王福元,徐家文,赵建社等.基于加工过程数值模拟的电解加工参数选择方法[J].中国机械工程, 2006, (17): 716-723.
    [42]葛媛媛,王福元.异形型腔数控电解加工过程的模拟仿真[J].制造技术与机床, 2008(2):50-53
    [43]徐家文,云乃彰,王建业等.电解化学加工技术原理[J] .工艺及应用,第一版.北京:国防工业出版社, 2008.
    [44]朱树敏,陈远龙.电化学加工技术[M].北京:化学工业出版社, 2006.
    [45]彭思平,徐家文,李颖等.微细电解加工机理探讨[J].电加工与模具, 2005, 2: 26-29.
    [46]陈明.微细螺旋冷却孔电解加工技术研究[D]. 2009.
    [47]王德海.紫外光固化材料——理论与应用[M],第一版.北京:科学出版社, 2001.
    [48] Luo S Y. Effect of fillers of resin-bonded composites on diamond retention and wear Behavior[J]. 1999, wear(236): 339-349.
    [49]王秀峰,罗宏杰.快速原型制造技术[M].北京:中国轻工业出版社, 2001.
    [50] Chen W K., Huang H. Ultra precision grinding of spherical convex surfaces on combination brittle materials using resin and metal bond cup wheels[J]. Journal of Materials Processing. Technology, 2003, 140: 217-223.
    [51]刘福庆.紫外光固化金刚石线锯制造技术研究[D]. 2008.
    [52]赵建社,徐家文.异形型腔数控电解加工过程的数字化模拟[J].高技术通讯, 2006, 16(4): 363-366.
    [53]章海涛,程维明.一种基于图像处理的亚像素测量方法[J].上海大学学报(自然科学版), 2005, 11(5): 485-489.
    [54]陈德伟. MATLAB图形用户界面的制作[J].常州工学院学报, 2005, 18(4): 7-11.
    [55]邱金蕙,王矞辉,李振全.基于MATLAB/GUI的新型界面开发方式[J].河北工业科技, 2008, 25(4): 233-235.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700