用户名: 密码: 验证码:
官山保护区白颈长尾雉栖息地选择及评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2008年9月~2010年1月,对江西官山国家级自然保护区白颈长尾雉(Syrmaticus ellioti)栖息地进行调查,并与同域分布的白鹇(Lophura nycthemera)栖息地进行比较,结合官山地形图(1:100000)和植被图,利用ArcGis 9.3对保护区白颈长尾雉栖息地片断化进行了研究。
     1)选择14个因子,对官山白颈长尾雉栖息地选择进行综合分析,结果表明:该雉繁殖期主要选择偏阳坡,坡度较缓,乔木和灌木盖度较大,草本高度较高的阔叶林中;越冬期则主要选择海拔较低,偏阳坡,坡度较缓,水源距离较近、乔木和灌木盖度较大,灌木和草本种数较丰富,灌木高度较高,以常绿阔叶树种为主的区域。保护该雉应侧重于对保护区林型的保护。
     2)选取8个资源轴分析了两个种的多维生态位宽度、重叠及种间竞争。结果表明,白颈长尾雉和白鹇栖息地空间生态位宽度均十分狭窄。繁殖期,两种雉类综合空间生态位宽度分别为0.382和0.427,除坡向、水源和草本盖度3个资源轴外,在其他资源轴上的生态位宽度白鹇均略大于白颈长尾雉,白鹇比白颈长尾雉的分布区更广。二者竞争的激烈程度由高到低依次为植被类型、乔木盖度、坡度、灌木盖度、坡向、海拔、草本盖度和水源距离。在栖息地选择上侧重于对植被资源的选择,竞争最为激烈;越冬期,白鹇和白颈长尾雉综合空间生态位宽度分别仅为0.268和0.294;白鹇的海拔和坡度空间生态位大于白颈长尾雉,而白颈长尾雉的坡向生态位宽度大于白鹇,在其他资源轴上二者接近;白颈长尾雉和白鹇的栖息地生态位相似性为0.425,竞争系数为0.584,竞争比较激烈。进行保护区物种保护的同时应协调两者的种间竞争。
     3)采取“被利用生境—可获得生境比较法”,以对各评价因子不同梯度的资源选择指数为依据,确定了白颈长尾雉适宜性评价准则。应用ArcGIS9.3空间分析功能和栖息地片断化指数,对官山保护区白颈长尾雉栖息地进行了适宜性评价。结果表明:在官山自然保护区适宜白颈长尾雉繁殖的栖息地斑块有502个,总面积为3307 ha,占保护区总面积的28.6%,分离度指数和片断化程度指数分别为0.365和0.912;适宜白颈长尾雉越冬的栖息地斑块有514个,总面积2755 ha,占保护区总面积的23.8%,分离度指数和片断化程度指数分别为0.443和0.939。官山保护区白颈长尾雉栖息地片断化较严重,片断化现象在白颈长尾雉越冬期加剧,越冬期是该雉种群壮大的“瓶颈”,应着重于越冬栖息地的保护。
During September 2008 and January 2010, we investigated the habitat of Elliot's pheasant (Syrmaticus ellioti) and compared with Silver Pheasant's (Lophura nycthemera), combining with topographic map and vegetation map, we studied on the habitat evaluation of this area with the ArcGis9.3 in Guanshan National Nature Reserve in Jiangxi Province.
     We analyzed the habitat selection of Elliot's pheasant by fourteen habitat resource axes. The results showed that the pheasant mainly inhabited in the broad-leaved forest, where is high-cover of arbor and shrub and high herb height, at a low elevation with a gentle slope mostly on the sunward hillsides in breeding season; And mainly inhabited the region with characteristics such as lower elevation, gentle slope, sunward hillsides, short-distance to water source, high-cover of arbor and shrub, abundant of shrub and herb species, high shrub height and the evergreen broad-leaved forest. The protection of the pheasant should be focused on protection of forest types in nature reserve.
     By eight habitat resource axes, we analyzed the niche breadth, niche overlap and interspecies competition of these two species, Elliot's pheasant and Silver Pheasant. The results showed that the integrative niche breadth of these two pheasant species was very narrow. In breeding season, the integrative niche breadth of these two pheasant species was only 0.382 and 0.427 respectively. in addition to resource-axes of slope, water and herbaceous cover, in the other resource-axes, the niche breadth of Silver Pheasant was slightly wider than that of Elliot's pheasant. Compared with Elliot's pheasant, the distribution area of silver pheasant was wider. The intensity of competition between the two species ranked as vegetation type, arbor cover, slope, shrub cover, aspect, altitude, herbaceous cover and distance from water sources. They paid attention to the selection vegetation resources in habitat selection, and the competition was the fiercest. In wintering season, the integrative niche breadth of these two pheasant species was only 0.268 and 0.294 respectively, indicating a narrow niche. On the resource axes of altitude and slope, the niche breadths of Silver Pheasant was wider than that of White-necked Long-tailed Pheasant, while on aspects resource axis, it was narrower. However, the niche breadths of two species were similar on all the other resource axes. What’s more, the value of niche similarity of two species was 0.425 and the competition coefficient was 0.584, which showed an intense competition between two species. Our findings suggest that as to protect the two species in the nature reserve, as we should coordinate the inter-specific competition between the two kinds.
     Based on the resource selection index of each evaluation factor at different gradients, we determined the habitat suitability evaluation criteria for Elliot's pheasant with‘the method of used-available habitat comparison’. We evaluated the habitat suitability of Guanshan Nature Reserve for Elliot’s pheasant by the function of ArcGIS9.3 spatial analysis and index of habitat fragmentation. The result showed that, in breeding season, there were 502 habitat patches with the area of 3307 hectare, holding 28.6% of the total area of the nature reserve. The splitting index was 0.365 and the fragmentation index was 0.912; in wintering season, there were 514 habitat patches with the area of 2755 hectare, possessing 23.8% of the total area of the nature reserve. The splitting index was 0.443 and the fragmentation index was 0.939. The habitat fragmentation was serious and exacerbated in wintering season, which is the 'bottleneck' of population growth for Elliot's pheasant. We should focus on the protection of wintering habitat.
引文
[01]蔡路昀,徐言朋,蒋萍萍等.白颈长尾雉的活动区和日活动距离[J].浙江大学学报(理学版), 2007, 34(6): 679~683.
    [02]常弘,肖前柱.带岭地区马鹿冬季对生境的选择性[J].兽类学报, 1988, 8(2): 81~88.
    [03]陈化鹏,高中信.野生动物生态学[M].哈尔滨:东北林业大学出版社, 1992.
    [04]陈利顶,刘雪华,傅伯杰.卧龙自然保护区大熊猫生境片断化研究[J].生态学报, 1999, 19(3): 291~297.
    [05]程宏毅,鲍毅新,陈良等.黑麂(Muntiacus crinifrons)栖息地片断化对种群基因流的影响[J].生态学报, 2008, 28(3): 1109~1119.
    [06]丁平,诸葛阳.白颈长尾雉(Syrmaticus ellioti)的生态研究[J].生态学报, 1988, 8(1): 44~50.
    [07]丁平,诸葛阳,张词祖.白颈长尾雉繁殖生态的研究[J].动物学研究, 1990, 11(2): 139~144.
    [08]丁平,杨月伟,梁伟等.贵州雷公山自然保护区白颈长尾雉栖息地研究[J].动物学报, 1996, 42(增刊):62~68.
    [09]丁平,姜仕仁,诸葛阳.浙江西部白颈长尾雉栖息地片断化研究[J].动物学研究, 2000, 21(1): 65~69.
    [10]丁平,杨月伟,李智等,白颈长尾雉栖息地的植被特征研究[J].浙江大学学报(理学版), 2001, 28(5): 557~562.
    [11]丁平,杨月伟,李智等.白颈长尾雉的夜宿地选择研究[J].浙江大学学报(理学版), 2002, 29(5): 564~568.
    [12]高玉仁.白鹇食性研究[J].动物学研究, 1993, 14(2): 194~196.
    [13]高中信.动物生态学实验与实习方法[M].哈尔滨:东北林业大学出版社, 1992.
    [14]韩兴国.岛屿生物地理学与生物多样性保护[M].见:中国科学院生物多样性委员会主编.生物多样性研究的原理和方法.北京:中国科学技术山版社, 1994, 83~103.
    [15]江惠敏.白颈长尾雉的人工饲养管理与繁殖[J].养禽与禽病防治, 2005, 11: 40~42.
    [16]李炳华.皖南的白颈长尾雉[J].野生动物, 1985, 5: 8~20.
    [17]李迪强,蒋志刚,王祖望.普氏原羚的活动规律与生境选择[J].兽类学报, 1999, 19(1): 17~24.
    [18]林大影,邢韶华,赵勃等.北京山区森林植被中珍稀濒危草本植物生态位[J].生态学杂志, 2007, 26(6): 781-786.
    [19]刘雪华, Bronsveld MC, Toxonpeus AG等.数字地形模型在濒危动物生境研究中的应用[J].地理科学进展, 1998, 17(2): 50~58.
    [20]刘信中,吴和平.江西官山自然保护区科学考察与研究报告[M].北京:中国林业出版社, 2005.
    [21]龙迪宗.白颈长尾雉的生态[J].野生动物, 1985, (1): 24~25.
    [22]欧阳志云,刘建国,肖寒等.卧龙自然保护区大熊猫生境评价[J].生态学报, 2001, 2l(11): 1869~1874.
    [23]彭长根,楚国忠,郭晶华.江西大岗山年珠林场白颈长尾雉和白鹇的秋季食物组成[J].林业科学研究, 1994, 7(5): 574~578.
    [24]彭岩波,丁平.白颈长尾雉春季扩散活动的影响因子[J].动物学研究, 2005, 26(4): 373~378.
    [25]沈钧,余新华.白颈长尾雏的饲育[J].动物学杂志, 1988, 23(6): 37~38.
    [26]石建斌,郑光美.白颈长尾雉的活动区[J].北京师范大学学报(自然科学版), 1995, 31(4): 513~519.
    [27]石建斌,郑光美.白颈长尾雉栖息地的季节变化[J].动物学研究, 1997, 18(3): 275~283.
    [28]王立龙,王广林,黄永杰等.黄山濒危植物小花木兰生态位与年龄结构研究.生态学报, 2006, 26(6): 1862-1871.
    [29]徐言朋,郑家文,丁平等.官山白颈长尾雉活动区域海拔高度的季节变化及其影响因素[J].生物多样性, 2007, 15(4): 337~343.
    [30]徐基良,张晓辉,张正旺等.白冠长尾雉越冬期栖息地选择的多尺度分析[J].生态学报, 2006, 26(7):2061~2067.
    [31]颜忠诚,陈永林.动物的生境选择[J].生态学杂志, 1998,17(2): 43~49.
    [32]杨效文,马继盛.生态位有关术语的定义及计算公式评述.生态学杂志, 1992, 11(2): 41~49.
    [33]张恩迪,滕丽微,吴咏蓓.江苏盐城自然保护区獐栖息地的质量评价[J].兽类学报, 2006, 26(4): 368~372.
    [34]张国钢,郑光美,张正旺等.山西芦芽山褐马鸡越冬栖息地选择的多尺度研究[J].生态学报, 2005, 25(5):952~957.
    [35] Allen GA. 1979. The long-tailed pheasants, Genus Syrmaticus. Game Bird Breeders Avicult. Zool. Conserv. Gaz, 28(1~2):14~24.
    [36] Anon. 1976. The Elliot’s Pheasant. Game Bird Breeders Avicult. Zool. Conserv. Gaz, 25(8):13~14.
    [37] Bissonette JA. 1997. Scale-sensitive ecological properties: historical context, current meaning. Wildlife and landscape ecology: effects of pattern and scale. New York: Springer-Verlag.
    [38] Block WM, Brennan LA. 1993. The habitat concept in ornithology: theory and applications. Current Ornithology, 11: 35~91.
    [39] Brennan LA, Block WM, Gutibrrez RJ. 1987. Habitat use by mountain quail in northern California. Condor, 89: 56~14.
    [40] Charnov EL. 1976. Optimal foraging, the marginal value theorem. Theoretical Population Biology, 9: 129~136.
    [41] Christian G, Alessandro M, Diego K, et al. 2001. A wolf habitat suitability prediction study in Valais (Switzerland). Landscape and Urban Planning, 55: 55~65.
    [42] Colwell RK, Futuyma DJ. 1971. On the measurement of niche breadth and overlap. Ecology, 52: 567-576.
    [43] Delacour J. 1977. The pheasants of the world. World Pheasant Association and Spur Publications (2nd edition), Hindhead, U.K.
    [44] Esely JD Jr, Bollinger EK. 2001. Habitat selection and reproductive success of Loggerhead Shrikes in northwest Missouri: a hierarchical approach. The Wilson Bulletin, 113(3): 290~296.
    [45] Eyre TJ. 2007. Regional habitat selection of large gliding possums at forest stand and landscape scales in southern Queensland, Australia: II. Yellow-bellied glider (Petaurus australis). Forest Ecology and Management, 239: 136~149.
    [46] Ford HA, Paton DC. 1985. Habitat selection in Australian honeyeaters with special reference to nectar productivity. In: Cody ML. Habitat selection in birds. London: Academic Press Inc., 367~388.
    [47] Fowler J, Cohen L, Jarvis P. 1998. Practical Statistics for Field Biology. 2nd ed. West Sussex: Open University Press.
    [48] Franco AMA, Brito JC, Almeida J. 2000. Modeling habitat selection of common cranes (Grus grus) wintering in Portugal using multiple logistic regression. Ibis, 142: 351~358.
    [49] Fretwell SD, Lucas HL. 1970. On territorial behaviour and other factors influencing habitat distribution in birds. I. theoretical development. Acta Biotheoretica, 19: 16~36.
    [50] Fuhlendorf SD, Woodward AJW, Leslie Jr DM, et al. 2002. Multi-scale effects of habitat loss and fragmentation on lesser prairie-chicken populations of the US Southern Great Plains. Landscape Ecology, 17: 617~628.
    [51] Graves GR. 2002. Habitat characteristics in the core breeding ranges of the Swainson’s Warbler. The Wilson Bulletin, 114(2): 210~220.
    [52] Heezik YV, Seddon PJ. 1999. Seasonal changes in habitat use by houbara bustards (Chlamydotis undulate) macqueenii in northern Saudi Arabia. Ibis. 141: 208~215.
    [53] Hidén O. 1965. Habitat selection in birds: A review. Annales Zoologici Fennici, 2: 53~75.
    [54] Hill DA, Robertson P. 1988. Breeding success of wild and hand reared ring-necked pheasants. J. Wildlife Manage. 52(3): 446~450.
    [55] Holt RD. 1985. Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat distribution. Theoretical Population Biology, 28: 181~208.
    [56] Jiang PP, Lang QL, Fang SG. 2005a. A genetic diversity comparison between captive individuals and wild individuals of Elliot’s Pheasant (Syrmaticus ellioti) using mitochondrial DNA. J Zhejiang Univ SCI, 68(5): 413~417.
    [57] Jiang PP, Fang SG and Ding P. 2005b. An application of control region sequence as a matriline age marker for Elliot’s Pheasant of a zoo population. Animal Biotechnology 16: 1~5.
    [58] Johnsgard PA. 1999. The pheasant of the world: Biology and natural history. Washington: Smithsonian Institution Press.
    [59] Johnson TL, Swift DM. 2000. A test of a habitat evaluation procedure for Rocky Mountain bighorn sheep. Restoration Ecology, 8(45): 47~56.
    [60] Lack D. 1933. Habitat selection in birds with special reference to the effects of afforestation on the Brechland avifauna. Journal of Animal Ecology, 2(2): 239~262.
    [61] Lawlor RL, Smith JM. 1976. The coevolution and stability of competing species. American Naturalist, 110: 76~99.
    [62] Levins R. 1968. Evolution in changing environments. Princeton, New Jersey: Princeton University Press.
    [63] MacArthur RH, Pianka ER. 1966. On optimal use of a patchy environment. American Naturalist, 100: 603~609.
    [64] May RM. 1975. Some notes on estimating the competition matrix, Ecology, 56: 737-741.
    [65] McGrath MT, DeStefand S, Riggs RA, et al. 2003. Spatially explicit influences on northern goshawk nesting habitat in the interior Pacific Northwest. Wildlife Monographs, 154: 1~63.
    [66] Murie DJ. 1995. Comparative feeding ecology of two sympatric rockfish congeners, Sebastes caurinus (Copper Rockfish) and S. maliger (Quillback Rockfish). Marine Biology, 124: 341~353.
    [67] Miller DA, Hurst GA. 1999. Habitat use of eastern wild turkeys in central Mississippi. J. Wild. Manage. 63(1), 210~222.
    [68] Mitchell MS, Lancia RA, Gerwin JA. 2001. Using landscape-level data to predict the distribution of birds on a managed forest: effects of scale. Ecological Applications, 11(6): 1692~1708.
    [69] Moilanen A, Cabeza M. 2007. Accounting for habitat loss rates in sequential reserve selection: Simple methods for large problems. Biological Conservation, 136(3): 470~482.
    [70] Morrison ML, Marcot BG, Mannan RW. 1992. Wildlife-habitat relationships: concepts and applications. Wisconsin: The University of Wisconsin Press.
    [71] Orians GH, Wittenberger JF. 1991. Spatial and temporal scales in habitat selection. The American Naturalist, 137: 830~849.
    [72] Pianka ER. 1973. The structure of lizard communities. Annual Review of Ecology and Systematics, 4: 53-74.
    [73] Pimm SL, Rosenzweig ML. 1981. Competition and habitat use. Oikos, 37: 1~6.
    [74] Pimm SL, Rosenzweig ML, Mitchell W. 1985. Competition and food selection: field tests of a theory. Ecology, 66(3): 798~807.
    [75] Possingham HP. 1992. Habitat selection by two species of nectarivore: habitat quality isoline. Ecology, 73(5): 1903~1912.
    [76] Rands MRW. 1989. Habitat Conservation: the key to threatened species management and the manatenance of biological diversity. Proc.4th Int. Pheasant Sym, Beijing, China.
    [77] Rosenzweig ML, Winakur J. 1969. Population ecology of desert rodent communities: habits and environmental complexity. Ecology, 50(4): 558~572.
    [78] Rosenzweig ML. 1974. On the evolution of habitat selection. Pr. First International Congress of Ecology, 401~404.
    [79] Rosenzweig ML. 1979. Optimal habitat selection in two-species competitive systems. Fortschritte der Zoologie, 25:283~293.
    [80] Rosenzweig ML. 1981. A theory of habitat selection. Ecology, 62(2): 327~335.
    [81] Rosenzweig ML. 1985. Some theoretical aspects of habitat selection, In: Cody ML. Habitat selection in birds. London: Academic Press Inc.
    [82] Rosenzweig ML. 1991. Habitat selection and population interactions: the search for mechanism. American Naturalist, 137(supplement): 5~28.
    [83] Savigac C, Desrochers A, Huot J. 2000. Habitat use by Pileated Woodpeckers at two spatial scales in eastern Canada. Can. J. Zool. 78: 219~225.
    [84] Schoener TW. 1974. Some methods for calculating competition coefficients from resource utilization spectra. American Naturalist, 108: 332~340.
    [85] Smith SA, Stewart NJ, Gates JE. 1999. Home ranges, habitat selection and mortality of ring-necked pheasants (Phasianus colchicus) in north-central Maryland. The American Midland Naturalist, 141(1): 185~198.
    [86] Smith TS, Flinders JT. 1991. A habitat evaluation procedure for Rocky Mountain bighorn sheep in the intermountain West. Great Basin Naturalist, 51: 205~225.
    [87] Sodhi NS, Paszkowski CA, Keehn S. 1999. Scale-dependent habitat selection by American Redstarts in aspen-dominated forest fragments. The Wilson Bulletin, 111(1): 70~75.
    [88] Svardson G. 1949. Competition and habitat selection in birds. Oikos, 1: 157~174.
    [89] Thompson CM, McGarigal K. 2002. The influence of research scale on bald eagle habitat selection along the lower Hudson River, New York (USA). Landscape Ecology, 17: 569~586.
    [90] Verner J, Morrison ML, Ralph CJ. 1986. Wildlife 2000: modeling habitat relationships of terrestrial vertebrates. Madison: University of Wisconsin Press.
    [91] Wiens JA. 1989. Spatial scaling in ecology. Functional Ecology, 3: 385~397.
    [92] Young L, Zheng GM, Zhang ZW. 1991. Winter movements and habitat use by Cabot’s Tragopan (Tragopan caboti) in southeastern China. Ibis, 133: 121~126.
    [93] Vanderploeg HA, Scavia D. 1979. Calculation and use of selectivity coefficients offeeding: zooplankton grazing. Ecology Modeling, 7: 135~149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700