用户名: 密码: 验证码:
模糊控制算法研究及其在水泥球磨机上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代水泥生产的整个流程中,生料粉磨具有重要的地位,磨机工作的稳定性以及出磨生料的质量将直接影响水泥产品的最终质量和等级。目前,国内水泥企业使用的生料磨系统大都是球磨机,然而,水泥球磨机系统具有多变量、强耦合、非线性严重以及生产工况变化大等工作特性。而目前广泛使用的手动控制或者简单的单回路PID调节器等常规控制方式难以适应由于球磨机内部工况复杂造成的非线性等特性,从而无法及时克服系统中的扰动,难以取得理想的控制效果。
     模糊控制算法是一种将专家的控制经验应用于控制器的智能控制算法,对于被控对象的非线性和强耦合等特点具有极强的适应性。因此,从1965年模糊控制理论被提出以来,模糊控制技术已经在工业控制的很多领域中得到了广泛的应用。根据水泥球磨机的工作特性以及模糊控制的特点,将模糊控制算法应用于生料磨系统的控制中,结合人工的控制经验可以取得较好的控制效果。然而,纯粹的模糊控制往往具有稳态误差较大,存在扰动等问题,单独的使用模糊控制难以完全满足对于生料磨系统实际控制的需要,因此,模糊控制与其他控制算法或者多个模糊控制器按照一定算法组合使用成为必要的选择。通过对从流程工业系统中抽象出来的同样具有多变量、强耦合、非线性特点的实验设备——储联罐系统的上下罐水位的控制来模拟流程工业过程中对液位、压力、流量等被控量的控制,对于算法的移植和实用化具有一定的现实意义。
     本课题正是基于水泥生料磨系统和模糊控制的特点,针对山东水泥厂4#水泥生产线的球磨机系统,设计相应的模糊控制器,并完成一系列C++编程和OPC通讯等具体的工程实践工作。通过对球磨机的模糊优化控制和对配料系统的优化控制,可以基本保证水泥生料磨的高效稳定运行,同时保证产品的质量。从而实现对整个水泥生料磨系统的优化控制,实现生产的整体优化。这说明模糊控制算法能够很好的解决水泥球磨机系统中存在的多变量、强耦合、非线性等问题,并且对负荷扰动、系统噪声等也都具有一定的抑制能力。
In modern cement production process, the raw material grinding has an important place, who works stability, and the quality of the out raw materials will directly affect the quality of the final cement product and grade. At present, the usual raw mill system that the domestic cement companies used are mostly ball grinding mill systems, which has the characteristics of multi-variable, strong coupling, nonlinear serious and variation greatly in different operating conditions, and the widely used conventional control methods, such as manual control or simple single-loop PID regulator are difficult to adapt to the complex non-linear and other conditions within the ball mill. So it can not overcome the system disturbance in time, and it is difficult to achieve the desired control effects.
     The fuzzy control algorithm is an intelligent controller which can applied to the experience of the experts, and for the nonlinear controlled and strong coupling objects, it has a strong adaptability. Therefore, since 1965, the fuzzy control theory was proposed, it has been used widely in the industrial control areas. According to the operating characteristics of the cement raw ball mill system, as well as the characteristics of fuzzy control, combining with the manual control experience, fuzzy control algorithm can get better control effect. However, pure fuzzy control tend to have higher steady-state error and disturbances, so the only use of fuzzy control is impossible to completely satisfy the raw mill system for the actual control needs, therefore, with other control algorithms or more of the fuzzy control devices used together become a necessary choice. Through the control of water tank system, which is abstract from the industrial process system and has the same characteristics of multi-variable, strong coupling, and non-linear, to simulate the control of industrial processes in level, pressure, flow rate is practical significance in algorithms transplanting.
     This issue designed the corresponding fuzzy controller, and complete a series of C + + programming and the engineering work of OPC communications based on the characteristics of cement raw material grinding system and fuzzy control, according to Shandong Cement Factory cement production line 4 # ball grinding machine system. By the fuzzy optimal controlling of ball grinding machine, the cement raw mill can work in highly efficient and stable operation, while ensuring product quality, which means the fuzzy control algorithm can be a good solution to deal with multi-variable, strong coupling, nonlinear problems in cement mill system, and to disturbances, system noise, it also have a certain suppression ability.
引文
[1]章卫国,杨向忠.模糊控制理论与应用[M].陕西:西北工业大学出版社,1999.
    [2]诸静.模糊控制原理与应用[M].北京:机械工业出版社,1995.
    [3]王仲春.水泥工业粉磨工艺技术[M].北京:中国建材工业出版社,2004.
    [4]李崇晟,周洪,姚钢,胡效雷.国内球磨机控制系统现状[J].华中电力,1999,12(3):11-14.
    [5]韩仲琦.现代水泥粉磨技术的发展[J].山西建材,2000(3):8-12.
    [6]李沛然,申涛,王孝红.粉磨过程负荷优化控制系统[J].济南大学学报,2008,22(2):116-123.
    [7]张万胜.影响球磨机效率的主要因素[J].江苏陶瓷,2001,34(2):33-34.
    [8]张永谋.中卸烘干磨的操作要点[J].四川水泥,2002(2):36-39.
    [9]李仁龙.中卸烘干磨的操作要点[J].新世纪水泥导报,2005 (3):13-14.
    [10]刘兴国,王东久,张振华,李传海.球磨机最佳工况的探讨[J].河北陶瓷,1998,26(1):19-21.
    [11] L. A. Zadeh,“Fuzzy sets”, Information and Control, 1965, pp.338-353.
    [12] J. Zhu, Fuzzy Control Principle & Application, China Machine Press, Beijing, 2001.
    [13] W. Z. Qiao and M. Mizumoto, PID type fuzzy controller and parameters adaptive method, Fuzzy Sets and Systems, 1996, pp. 23-35.
    [14] S. Z. He, S. H. Tan, F. L. Xu and P. Z. Wang, Fuzzy self-tuning of PID controllers, Fuzzy Sets and Systems, 1993, pp. 37-46.
    [15] A. Maidi, M. Diaf and J.P. Corriou, Optimal linear PI fuzzy controller design of a heat exchanger, Chemical Engineering and Processing: Process Intensification, 2008, pp. 938-945.
    [16] Y. T. Juang, Y.T. Chang and C. P. Huang, Design of fuzzy PID controllers using modified triangular membership functions, Information Sciences, 2008, pp. 1325-1333.
    [17] Chang Y, Chen S, Liau C. Fuzzy Interpolative Reasoning for Sparse Fuzzy-Rule-Based Systems Based on the Areas of Fuzzy Sets. IEEE Transaction on Fuzzy Systems, 2008,16: 1285-1301.
    [18] Munoz-Salinas R., Aguirre E., Cordon O., Garcia-Silvente M. Automatic Tuning of a Fuzzy Visual System Using Evolutionary Algorithms: Single-Objective versus Multiobjective Approaches. IEEE Transaction on Fuzzy Systems, 2008,16: 485-501.
    [19] Yongming Li. Some Results of Fuzzy Turing Machines. IEEE Transaction on Fuzzy Systems 2006,1: 3406-3409.
    [20] Ping-Teng Chang, Kuo-Chen Hung.α-cut fuzzy arithmetic: simplifying rules and a fuzzy function optimization with a decision variable. IEEE Transaction on Fuzzy Systems 2006,14: 496-510.
    [21] Yih-Jen Horng, Shyi-Ming Chen, Yu-Chuan Chang, Chia-Hoang Lee. A new method for fuzzy information retrieval based on fuzzy hierarchical clustering and fuzzy inference techniques. IEEE Transaction on Fuzzy Systems, 2005,13: 216-228.
    [22]周海平,周建新.中储式球磨系统计算机控制的开发[J].华东电力,1994,(8):6-10.
    [23]陈尔奎,谭得健.水泥粉磨系统的DCS控制[J].工矿自动化,2002,(2):4-7.
    [24]葛文胜.基于专家模糊智能的中储式球磨机制粉系统[J].华北电力技术,2004(8):28-31.
    [25]姚鲁之.球磨机能量利用率极低的原因剖析[J].绵阳经济技术高等专科学校校报,2002,19(2):13-16.
    [26]李遵基,王丽君.模糊控制理论在球磨机制粉系统中的应用[J].华北电力大学学报,1997,24(1):1-5.
    [27]赵斌,齐辉.模糊控制在200MW机组球磨机上的应用[J].浙江电力,2000:20-22.
    [28]卓泽强.模糊控制在球磨机中的应用[J].北京石油化工学院学报,2003,11(4):53-57.
    [29]唐耀庚.模糊逻辑控制在磨机负荷控制中的应用[J].南华大学,2002:31-33.
    [30]梁伟平,宋之平,李遵基.球磨机制粉系统智能控制算法的研究及应用[C].北京:华北电力,2000.
    [31]汪海峰,诸静.模糊预测控制在水泥生产过程中的应用[J].工业仪表与自动化装置,2003,2:10-13.
    [32]李遵基,姜萍,梁伟平.球磨机模糊控制在分散控制系统中的应用[J].华北电力大学学报,2000,27(2):42-46.
    [33]朱宽堂.锟压机加中卸磨调试经验[J].水泥CEMENT,2007,(8):45-47.
    [34]周新才.浅谈应用模糊控制理论探讨球磨机增产的可能性[J].化工生产与技术,1994,(3):48-51.
    [35]欧进萍,张吉礼.作用模糊自己推理方法的研究与应用[J].模糊系统与数学,2000,14(3):58-65.
    [36]黄治清,张维廉.一种具有双积分控制的模糊控制器[J].铁道学报,1995,17:85-91.
    [37]杨倜人.论水泥熟料中三个率值的匹配关系[J].四川水泥,2002,(3):10-12.
    [38]林宗寿.生料配料率值控制系统[J].河南建材,2001,(3):11-13.
    [39]范开俊,金晓明.水泥生产生料配料过程控制综述[J].硅酸盐通报,2008,27(4):759-765.
    [40]刘彬,郝晓辰,刘海滨.水泥生料配料控制系统研究[J].水泥技术,2005,(3):95-97.
    [41]张志刚,林小峰,王彰云.水泥生料配料过程优化控制系统[J].计算技术与自动化,2007,26(1):30-32.
    [42]邢仁鹏,王孝红,申涛.基于最小二乘法水泥生料配料算法的研究[J].中国水泥,2007,1(2):47-48.
    [43]李涛.稳定粉煤灰配料的技术措施[J].水泥,2008,(4):26-27.
    [44]赵立刚,仇明华,罗娟,张正星.C语言在水泥配料计算中的运用[J].计算机与应用化学,2003,20(6):852-857.
    [45]张永,李其申,李镍岚.基于VC_的动态链接库的创建与调用方法[J].南昌航空工业学院学报,2005,19(3):81-83.
    [46]马晓辉.VB中动态DLL的开发和调用[J].信息技术,2005,(3):17.
    [47]张彦斌,贾立新,杨波,樊少华.自寻优——模糊控制策略在球磨机控制中的实现[J].电力系统自动化,1999,23(17):23-26.
    [48]吴建国,张培建.球磨机新型控制策略研究与应用[J].电力自动化设备,2006,26(3):9-12.
    [49]张培建,姜建军,吴建国,马聪.球磨机制粉系统控制策略研究与应用[J].南通大学学报,2005,4(3):29-32.
    [50]王孝红,江海鹰,袁铸钢.磨机负荷的预测控制[J].山东建材学院学报,1994,8(2):52-56.
    [51]李少远,王群仙,陈增强,袁著祉.基于模糊推理和广义预测的组合控制[J].南开大学学报,1997,30(2):20-24.
    [52]喻林,刘彦呈,张海燕.递阶模糊控制在球磨机制粉系统中的应用[J].矿山机械,2007,35(1):21-26.
    [53]刘长良,梁伟平,董泽.钢球磨煤机制粉系统的递阶模糊控制[J].动力工程,2002,22(5):1969-1973.
    [54]刘冲,唐耀庚.磨机负荷级联模糊控制系统[J].控制工程,2003,10(5):27-29.
    [55]岳恒,周晓杰,王昕等.钢球磨中储式制粉系统智能解耦控制仿真系统[J].系统与仿真学报,2002,14(10):1340-1343.
    [56]吴建国,张培建.一种球磨机新型控制策略的研究与应用[J].南京理工大学学报,2005,29:183-186.
    [57]张智焕.水泥粉磨负荷自寻优Fuzzy控制[J].工业控制计算机,1997,(2):23-24.
    [58]周荣亮,张彦斌,崔栋刚,李畅.水泥磨负荷控制系统研究及应用[J].控制工程,2003,10(6):27-29.
    [59]吴友政,谢建君,王斌.专家模糊控制在球磨机上的应用[J].工业控制计算机,2001,14(8):31-33.
    [60] V V Breusegem, L Chen, G Bastin. An Industrial Application of Multivariable Linear Quadratic Control to a Cement Mill Circuit [J]. IEEE Transactions on Industrial Applications, 1996, 32(3), 670-677.
    [61] M Boulvin, A V Wouwer, R Lepore. Modeling and Control of Cement Grinding Processes [J].IEEE Transactions on Control Systems Technology, 2003, 11(5): 715-725.
    [62] F Bond. Grinding ball size selection [J]. Mining Engineering, 1958, 10(5): 592-595.
    [63] T Partyka, D Yan·Fine grinding in a horizontal ball mill[J]. Minerals Engineering, 2007, 20(4): 320 -326.
    [64] L Austin, R R KlimpeLuckie·Process Engineering of Size Reduction Ball Milling[C]. SME -AME, 1984.
    [65] X Chen, J Zhai, S Li, Q Li. Application of model predictive control in ball mill grinding circuit [J]. Minerals Engineering, 2007, 20(11): 1099-1108.
    [66] B Bequette. Process Control: Modeling, Design and Simulation [M]. USA: Prentice Hall, 2002.
    [67] H Ellerbrock. Comminution technology and energy management [M]. Zement-Kaik-Gips, 1994.
    [68] M Ramasamy, S Narayanan, D Rao. Control of ball mill grinding circuit using model predictive control scheme [J].Journal of Process Control, 2005, 15(3): 273–283.
    [69] A Pomerleau, D Hodouin, A Desbiens, et al. A survey of grinding circuit control methods: from decentralized PID controllers to multivariable predictive controllers [J]. Powder Technol, 2000, 108(3): 103-151.
    [70] Lindens D.A, J. Nie. A unified real- time approximate reasoning approach for use in intelligent control- pert2: Application to multivariable blood prissure control. INT. J. control, 1992, 56(2), 365-397.
    [71] J James, S McLooneb, W George. An optimization of an industrial grinding process [J]. Control Engineering Practice, 2005, 13(10): 1243–1258.
    [72] Y Shin, P Vishnupad. Neuron fuzzy control of complex manufacturing processes [J]. International Journal of Production Research, 1996, 34(12): 3291–3309.
    [73] W Liao, L Chen. A neural network approach for grinding processes: modeling and optimization [J]. International Journal of Machine, Tools and Manufacturing, 1994, 34(7): 919-937.
    [74]唐耀庚,刘冲.模糊逻辑在粉碎设备磨机负荷控制中的应用[J].电机与控制学报,2003,7(1):83-86.
    [75] L Magn, G Bastin, V Wertz. Multivariable Nonlinear Predictive Control of Cement Mills [J].IEEE Transactions on control systems technology, 1999, 7(4):502-509.
    [76]何菊侃,王广军,苟小军,杨晨.模糊自整定PID及其在磨煤机控制中的应用[J].技术交流,2004,(9):55-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700