用户名: 密码: 验证码:
粉煤灰加气砼生产过程控制应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
加气砼的生产过程包括配料粉磨、制浆、浇注和蒸压养护四个环节,各环节紧密联系,相互影响,任一环节出现问题都会影响整个生产过程及成品性能。其中配料粉磨和制浆浇注都是关键环节,直接影响产品质量和合格率,所以很有必要改进这两个环节的生产过程自动化程度,对其进行优化控制,以提高产品质量和原材料利用率,同时实现降低能耗,减少环境二次污染。
     配料过程中计量的准确度是加气砼生产过程控制的难点之一。本文针对配料工段目前普遍存在计量不准确,物料配比不能满足要求的问题,并结合该工段的工艺特点,提出一种采用双闭环比值控制系统来实现石灰和石膏两种物料的配比,并用模糊控制算法对PID参数进行整定,实现PID参数的在线调整。模糊控制器采用双输入三输出型式。该模糊控制算法通过找出PID控制器的三个参数Kp、Ki、Kd与误差e和误差变化率ec之间的模糊关系,并在系统运行过程中不断检测e和ec,根据检测结果制定相应的模糊规则进行调整,来满足不同偏差和偏差变化率对三个参数的不同要求,使其符合控制对象的变化。使用该模糊PID控制方法对PID参数进行整定后,系统在响应速度、抑制超调等方面都要优于常规PID。试验结果表明,该系统能够适时准确地调整PID参数,从而调整原料配比,提高胶结料质量。
     生产加气砼的主要原料粉煤灰是燃煤火力发电厂的废弃排放物,所以加气砼生产是一种废物利用的循环经济。然而,由于加气砼生产所需原料煤粉灰、散装水泥、石膏粉和石灰等多为粉状物,这些物料在生产过程中的处理量相当大,运输环节多,故而会向大气排放粉尘、烟尘和颗粒状污染物,这样虽然达到了对电厂排放物粉煤灰废物利用的目的,却又会对环境形成二次污染。二次污染物主要来源是物料破碎、原料提升、粉磨以及传送带传送物料等工段产生的粉尘类物质污染。本文针对加气砼生产性粉尘对环境二次污染的问题,提出一套新型粉煤灰加气砼清洁生产方案,并建立了清洁生产模型,该方案能提高原材料利用率并能实现清洁生产的目的。该清洁生产方案也适用于水泥行业以及其它粉尘性污染行业的清洁生产。
     本文结合内蒙某加气砼厂DCS控制系统的实际使用情况,将模糊PID控制算法通过OPC接口与集散控制系统进行数据通讯。强调并采用了模块化结构,增强了算法的通用性和可移植性,降低了企业成本。本课题提出的控制方案对提高产品合格率,提高自动化生产水平和设备利用率,降低能耗,减少环境二次污染,实现资源综合利用和提高生产效率有良好的控制效果。
The production of aerated concrete batching process includes four links ,material proportioning grinding, pulping, pouring and autoclaved conservation. All these sectors link cosely and influence each other . Any problems in these links will affect the production process and the performance of the the final product.Especially the grinding and pulping processes are the key links in the whole production process which directly impact on the product quality and the pass rate of the final product. Therefore it is very necessary to improve the process automation degree and optimal the control process for these two links .By doing these things ,we can improve the product quality and the material utilization ratio,and realize reducing the energy consumption and decreasing the secondary environmental pollution.
     The accurate measment of the material proportioning process is one of the difficult task in aerated concrete production process.In this paper ,we aim at commonly existing problem ,the inaccurate measurement and the ratio of materials can not meet the requirements in aerated concrete ingredient process, combined with its technology characteristics, proposed a double closed-loop control system to achieve the ratio of the two kinds of materials :lime and gypsum .Using the control method of fuzzy logic control to tune the PID parameters and achieving on-line tuning PID parameters in the ingredient mixing process. The fuzzy logic controller adopts double inputs and three outputs patterns. This algorithm formulate the fuzzy adjust rules by identifying the fuzzy relationship between the three parameters, Kp, Ki, Kd and its’error e and error change rate ec to meet the different quirements of error e and error change rate ec rate .Letting the controller system to satisefied the changed control object . By using this mean, the system’s responsing speed and the ability of reducing overshot is improved greatly than the conventional PID .Testing result show that the system can adjust the PID parameters online accurately and timely .Thus can adjust the material proportion and improve the cementing material quality.
     The main material of Aerated Concrete is the abandoned emissions of the coal-fired power plant . Therefore, the production of aerated concrete is a kind of recycling economy by using the waste emissions .However , as the raw materials needed for the production of aerated concrete are mostly power materials ,such as coal ash, bulk cement, gypsum powder and lime powder, etc. The handling amout of these materials are largely in the production process .And also there are so many transport links in the product process .So the process will emission the power dust into the atmosphere . Although it can realize taking use of the fly ash ,the emissions of power plant and achieve recycling purpose, it resulted the secondary pollution to the environment .The resoures of the second pollution come from the power dust of the material crushing,material lifting ,grinding and material transporting by belt ,and so on . This paper in view of the problem of the second pollution bring by the product power of Aerated Concrete ,proposed a new type of cleaner production program whick suits for the fly ash aerated concrete .And build the cleaner product model . The scheme can improve the utilization of raw materials and to achieve the purpose of clean production . The cleaner production scheme also applies to the clean production of the cement industry and other sectors of power dust pollution
     This paper combined the field application control system of DCS in an aerated concrete factory in Neimeng , the algorithm of fuzzy PID controller communicates with the DCS control system by the OPC interface. This project emphasized and actualized the modularization, and enhanced the universality transplantation while reduced the cost of the enterprises.The scheme provided in this paper can improve the product qualified rate, improve the automation level of production and equipment utilization, reduce energy consumption , reduce environmental secondary pollution. Achieving comprehensive utilization of resources and improve production efficiency.
引文
[1]曹东生.ALC砂加气混凝土砌块(板)[J] .中国建材,2004,43(8):81-83
    [2]杨凯.基于PLC组态软件的砌块生产线控制系统研究[硕士学位论文] .西安:西安建筑科技大学,2007
    [3]成谢锋,王孝红,袁铸钢,等.粉煤灰加气砼清洁生产的分析与应用[J].节能与环保,2008,8(1),32-33
    [4]张新薇,陈旭东.集散系统及系统开放[M] .机械工业出版社,2005
    [5]王福元,吴正严.粉煤灰利用手册[M] .北京:中国电力出版社,2004
    [6]袁铸钢,孟庆金,景绍洪,等.加气砼生产线集散控制系统[J] .山东建材学院学报,2001,15(3):207-210
    [7] Morari. Model predictive control: Past, present and future [J]. Computers and Chemical Engineering, 1999, 23(425): 667-682.
    [8] Ying H. Analytical relationship between the fuzzy PID controllers and the linear PID control. Technical Report, Department of Biomedical Engineering, The University of Alabama at Birmingham, 1987
    [9] Ying H. Fuzzy Control and Modeling: Analytical Foundation&Application [M]. New York, IEEE Press, 2000.
    [10] Ying H, Siler W, Buckley J J. Fuzzy control theory: A nonlinear case [J]. Automatica, 1990, 26: 513-520
    [11] Ping H. A fuzzy controller with linear control rules is the sum of a global two-dimentional multilevel relay and a local nonlinear proportional-integral controller [J]. Automatica, 1993, 29: 499-505
    [12]蔡自兴,徐光佑.人工智能及其应用[M] .北京:清华大学出版社,2004
    [13]章为国,杨尚忠.模糊控制理论与应用[M] .西安:西北工业大学出版社,2001
    [14] E Brinksmeier,H Tonshoff,C Heinzel.Modelling and optimization of grinding processes [J].Journal of Intelligent Manufacturing,1998,9(4):303-314
    [15] Tsuge, Y, Hiratsuka, K. and Matsuyama, H. A Fault Detection and Diagnosis for The Continuous Process with Load-fluctuations Using orthogonal Wavelets.Computers and Chemical Engineering, 2000, 24(2-7): 761-767
    [16] F Voorbank.On the justification of Dempster’s rule of combination[J].Artificial Intelligence,1991,48:171 - 197.
    [17]权悦.热电厂CFB锅炉燃烧系统智能控制的研究[硕士学位论文] .济南:济南大学,2007.
    [18]苏明,陈伦军,林浩.模糊PID控制及其MATLAB仿真[J] .计算机应用,2004,24(4),51-55
    [19]张新薇,陈旭东.集散系统及系统开放[M] .机械工业出版社,2005
    [20]成谢锋,王孝红,袁铸钢,等.粉煤灰加气砼清洁生产的分析与应用[J].节能与环保,2008,8(1),32-33
    [21] Ordonez R. Passino K M. Stable Multi-input Multi-Output Adaptive Fuzzy/Control. IEEE. I999, (7)3: 345- 353
    [22] Xinli Fang, Taoshen. The Negative Pressure Control of Ball Mill Based on T-S Fuzzy model [C]. Jinan: IEEE International Conference, 2008
    [23] Xinli Fang, Taoshen, Xuesong Feng. The Bang-Bang control of Water Tank System Based on Fuzzy Decision[C].Shenyang:2009 Ninth International Conference on Hybrid Intelligent System Based on Fuzzy Decision, 2009
    [24]梁燕华,金鸿章,李东松.基于修正因子模糊PID控制在升力鳍系统中的应用[J] .控制与决策,2008,23(10):1139-1144
    [25]张益家,蕭德云.CBF锅炉汽包水位自较正PID模糊控制研究[J] .计算机应用与软件,2004,21(12):34-37
    [26]朱喜林,武星星,李晓梅.基于改进型模糊聚类的模糊系统建模方法[J] .控制与决策,2007,22(1):71-75
    [27]俞金寿.工业过程先进控制[M] .北京:中国石化出版社,2002
    [28]张乃尧,阎平凡.神经网络与模糊控制技术[M].北京:清华大学出版社, 2005
    [29]蔡宗平.控制系统故障诊断浅析.电光与控制, 2007, 14(4): 19-26.
    [30] Al Chilsholm. OLE for Process Control takes first step to ward data sharing standards .1 &CS,1996,69(9) :49-53
    [31]湫天红,李少远.基于模糊聚类的PWA系统的模型辨识[J] .自动化学报,2007,33(3):327-330
    [32]尹月卿,王孝红.模糊PID在加气砼配料过程中的应用[J].济南大学报(自然科学版),2010,24(2):180-184
    [33]汪涛.电子皮带秤在配料系统中的应用与维护[J] .电工技术, 2007,28(5):65-66
    [34]彭道刚,杨平,于会群,等.热工系统中PID参数的遗传算法整定[J] .上海电力学院学报. 2004, 6(2): 6-10
    [35] Ying H. Fuzzy Control and Modeling: Analytical Foundation&Application [M]. New York, IEEE Press, 2000
    [36]王树青,赵鹏程.集散型计算机控制系统.浙江大学出版社, 2001
    [37]赛汉胡尔,姚婕.粉煤灰的处理与综合利用[J] .内蒙古环境保护,2004,16(4):21-23
    [38]张继能,顾同增.加气砼工业丛书[M].湖北:武汉工业大学出版社,2003:8-14
    [39]姜继圣,罗玉萍,兰翔.新型建筑绝热、吸声材料[M]..北京:化学工业出版社,2002
    [40]王福元,吴正严.粉煤灰利用手册[M].北京:中国电力出版社,2004:8-10
    [41]吴姝芹.预测控制理论在水泥熟料篦式冷却过程中的应用研究[硕士学位论文] .济南:济南大学,2007
    [42] OPC Foundation. OPC Data Access Automation Interface Standard version 2.02[S],1999
    [43] OPC Foundation. OPC Data Access Custom Interface Standard version2.05[S], 2001
    [44]成谢锋,王孝红,袁铸钢.一种粉煤灰加气砼清洁生产新技术的研究[J].再生资源研究,2007,18(6),36-38
    [45]唐旭东.膨胀珍珠岩复合砌块的性能及施工[J] .新型建筑材料,2005,(5):45一47
    [46]何水清.蒸压加气混凝土质量分析及砌块应用[J].加气混凝土,2006,3(3):26-30
    [47] F Voorbank.On the justification of Dempster’s rule of combination[J].Artificial Intelligence,1991,48:171 - 197
    [48]胡昌华,张军波,夏军,等.基于MATLAB的系统分析与设计.西安:电子科技大学出版社, 1999
    [49] KANG Jingfu; WANG Xiufen. Effects of GH Admixture on the Early Strength of Fly Ash Concrete and Mortar. 2005,10: 755-760
    [50]阎福旺,李山林,袁延艺.信息融合技术[M].北京:海洋出版社,2001.
    [51]华鑫鹏,张辉宜,张岚.多传感器数据融合技术及其研究进展.中国仪器仪表, 2008,5: 40-43.
    [52]李界家,王丽娜,乔枫,等.基于模糊自整定PID的退火炉脉冲燃烧控制方法[J] .沈阳建筑大学学报,2008,24(6):1114-1117
    [53]蔡自兴,徐光佑.人工智能及其应用[M].北京:清华大学出版社,2004
    [54]刘文光.新型干法水泥烧成系统f-CaO软测量研究[硕士学位论文] .济南:济南大学,2007
    [55]王宁,孟宪尧.输入采用一般模糊划分的T-S模糊控制系统稳定性分析[J].自动化学报,2008 ,34(11):1441-1445
    [56]苏运霖,管纪文.证据论与约集论[J].软件学报,1999,10(3) :277– 282
    [57]韩金舫,桑琳,储毅.模糊控制中隶属函数的构造策略[J].交通与计算机,2001,19(6) :11– 13
    [58] J James,S McLooneb,W George.An optimization of an industrial grinding process [J].Control Engineering Practice,2005,13 (10):1243–1258

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700