用户名: 密码: 验证码:
安装误差对轴疲劳寿命的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前轴系安装误差的研究已趋成熟,而单轴安装误差有许多问题尚待解决。即使是轴系安装误差,其中倾角不对中也涉及单个轴的安装误差,开展单轴安装误差的疲劳寿命分析具有重要的理论意义和工程应用价值。本文通过理论分析,系统研究安装误差对单个轴疲劳寿命的影响。论文的主要工作和取得成果如下:
     (1)总结轴疲劳寿命的影响因素并对其分类分析。建立轴存在安装误差时的疲劳寿命估算模型,评判几种安全寿命预测模型及其影响因素;
     (2)介绍了局部应力应变法,得到了以最大主应变为损伤参量的疲劳寿命预测模型。讨论了轴在有β角情况下的有限元分析的基本方法和分析过程,利用ANSYS软件建立轴的三维实体模型,划分单元,加载求解,得到弯扭载荷下轴的局部应力应变分布图;
     (3)轴存在β角的情况下对其进行应力、应变分析。选择最大主应变为轴疲劳寿命损伤参量,进行了弯扭载荷下轴存在β角的疲劳寿命计算;
     (4)讨论不考虑缺口因素轴在弯扭载荷下β对轴疲劳寿命规律的影响。结果表明:纵向比较看,β越大,轴的多轴效应越明显;当2°45'<β≤3°,轴的疲劳寿命随β的变化的斜率迅速增加。由这个趋势可看出:轴的安装误差不能大于3°,否则β会极大影响轴的疲劳寿命。横向比较看,同一β下,轴所受的载荷越大其寿命越短;角度越小,不同载荷下轴的寿命相差越大;角度越大,不同载荷下轴的寿命相差越小;β角度越大,β角对寿命的影响越大,而载荷对寿命的影响就越小
     (5)讨论考虑缺口因素时,不同缺口参数下β对轴疲劳寿命的影响进行了分析。其中缺口深度对轴疲劳寿命的影响:β角相同,缺口半径、缺口深度越大,轴的寿命越小;缺口深度相同,β越大,β对寿命的影响越大,缺口深度对寿命的影响越小。所以轴在安装的时候提高安装精度也是增加轴疲劳寿命的方法。缺口半径对轴疲劳寿命的影响:当β一定时,随着ρ/t的逐渐增大,缺口轴的疲劳寿命呈上升趋势;当a/b一定时,在相同ρ/t下,随着β的增加对数疲劳寿命呈下降趋势;当ρ/t→0时,对数疲劳寿命曲线基本重合在一起,β对缺口轴疲劳寿命影响不很明显,说明在ρ/t很小时,影响缺口轴疲劳寿命的主要因素是缺口尖端半径ρ;当ρ/t≥0.2时,对数疲劳寿命随β的变化较明显,说明当ρ/t≥0.2时,影响缺口轴疲劳寿命的主要因素是β。
The reach of shafting misalignment which resulted from assemble error is mature now, but many problem of single-axis misalignment unsolved. Even the shafting misalignment also involve the single-axis assemble error, so carry out single-axis fatigue life of assemble error is important in theory and engineering applications. Through the theoretical analysis the thesis systematic discuss the single-axis fatigue life on assemble error. The work and main achievements are as follows:
     (1) Summarize and classify influenc factors of shaft fatigue life; build deflection spindle fatigue life estimate model; judge several fatigue life prediction safe model and its influencing factors.
     (2) Include local stress-strain approach; combining with multi-axis fatigue life prediction method obtain the fatigue life prediction model which treat the maximum principal strain as damage parameters; discussed the basic method and analysis process of inclination spindle finite element analysis; using the ANSYS software to build a three-dimensional spindle solid model, load and solution, then obtain local stress-strain cloud graph when the shaft under the coupled bending force and torsion load.
     (3) Analysis the inclination shaft stress and strain. In this paper select the maximum principal strain for the damage parameters of shaft fatigue life; calculate the fatigue life of inclination spindle which under the coupled bending force and torsion loads.
     (4) Discard parameters of notch determine, discuss the effect of inclination angleβto the cycle life of spindle which under the coupled bending force and torsion load. Longitudinal comparison, the results show that:under the coupled bending force and torsion loads, the inclination angleβgreater, the multi-axis effect more obvious; When 2°45'<β≤3°the slope of shaft fatigue life with the inclination angleβis increased rapidly, It is indicate that:the inclination angleβof shaft can not be greater than 3°, otherwise the inclination angle will greatly affect the shaft fatigue life. Horizontal comparisons, in the same inclination angleβ, the shaft forces greater the spindle cycle life shorter; in different force, if the angleβsmaller, the spindle cycle life more difference; if the angleβbigger, the spindle cycle life different more smaller; This shows that:theβlarge, theβangle impact on spindle cycle life more greater, but the force impact on spindle cycle life less.
     (5) Involved parameters of notch discuss in different notch parameters shaft fatigue life effect by inclination angleβ. The effect of different notch depth:if theβis same the bigger the notch depth and radius, the shorter the lifecycle; if the depth is same, the bigger theβ, the bigger effect ofβand the smaller effect of notch depth. The effect of different notch radius:in the certainβ, withρ/t increases gradually, the shaft fatigue life of an upward trend. When alb is same andρ/t are same, theβbigger, the fatigue life shorter; whenρ/t→0, the logarithm of spindle cycle life curve coincide, theβeffect of fatigue life is not very clear, it is prove that whenρ/t is small, the major factor in fatigue life of notch isρ, the radius of crack tip; whenρ/t≥0.2, along of the change ofβthe logarithm of fatigue life changes obviously, it is prove that whenρ/t≥0.2, the main factors of fatigue life isβ.
引文
[1]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003,1.
    [2]郑冶沙,王中光.疲劳研究的历史回顾[J].材料科学与工程,1993,11(2):1-6.
    [3]施永江.机械装备的失效分析[J].林业机械与木工设使用维修备,2001,31(7):32-33.
    [4]赵少汴.单轴载荷下的无限寿命疲劳设计方法与设计数据[J].机械设计1999,16(9):4-8.
    [5]邬华芝,高德平,郭海丁.疲劳破坏寿命的概率统计方法研究综述[J].强度与环境,2002,29(4):39-45.
    [6]徐灏.疲劳强度的发展及任务[J].理化检验-物理分册,1994,30(5):18-21.
    [7]Griffith A A. The phenomena of rupture and flow in solids [J]. Philosophical Trascanctions of the Royal Society of London,1921,221:163-197.
    [8]康颖安.断力学的发展与研究现状[J].湖南工程学院学报,2006,16(1):31-33.
    [9]Miner M. A. Cumulative damage in fatigue. Journal of Applied Mechanics,1945, 12:159-164.
    [10]熊峻江,高镇同.稳态循环载荷下疲劳/断可靠性寿命估算[J].应用力学学报,1997,14(3):14-18.
    [11]李明喜.东风-12型旋耕机刀轴疲劳寿命分析[J].洛阳工学院学报,2000,21(4):6-9.
    [12]RICHARD M. CHRISTENSEN. An Evaluation of Linear Cumulative Damage (Miner's Law) Using Kinetic Crack Growth Theory [J]. Mechanics of Time— Dependent Material,2002,4(6):363-377.
    [13]楼狄明,贺得时,王长荣,姜恩沪,夏建新.7FDL-16型柴油机连杆瓦工作性能、疲劳寿命估算及运用实践[J].内燃机车,1993,6:20-25.
    [14]倪侃,张圣坤.疲劳可靠性二维统计Miner准则[J].机械工程学报,2002,38(7):65-69.
    [15]熊峻江,高镇同.稳态循环载荷下疲劳/断可靠性寿命估算[J].应用力学学报,1997,14(3):14-18.
    [16]刘德刚,王凤洲,林春虎.国外疲劳研究及应用领域的新发展[J].铁道车辆,2001,39(9):10-12.
    [17]De-guang Shang, Guo-Qin Sun, Jing Deng. Nonlinear cumulative damage model for multiaxial fatigue [J]. Frontiers of Mechanical Engineering in China,2006, 1(3):78-81.
    [18]倪侃.随机疲劳累积损伤理论研究进展[J].力学进展,1999,29(1):43-65.
    [19]王雷,王德俊.一种随机多轴疲劳的寿命预测方法[J].机械强度,2003,25(2):204-206,232.
    [20]Graud Y. S. Multiaxial fatigue:A survey of the state of the art [J]. Resting & Eval.1981,(9):165-178.
    [21]MillerK. J, The Behaviour of Short Fatigue Crack and Their Initiation Part Ⅰ. A Review of Two Recent Books. Fatigue Fract [J]. Engng. Mater. Struct.1987,10, (1):75-91.
    [22]陈旭,许爽燕.多轴低周疲劳研究现状[J].压力容器,1997,3:58-61.
    [23]Aleksander Karolczuk and Ewald Macha. A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials [J]. Department of Mechanics and Machine Design,2005,134:267-304.
    [24]林晓斌,P. J. Heyes, A. Buczynski, M. W. Brown.多轴疲劳寿命工程预测方法[J].中国机械工程,1998,9(11):20-23.
    [25]V.A. Passipoularidis, T.P. Philippidis. A study of factors affecting life prediction of composites under spectrum loading [J]. International Journal of Fatigue,2009, 31 (3):408-417.
    [26]金奕山,李琳.随机振动载荷作用下结构Von Mises应力过程的研究[J].应用力学学报,2004,21(3):13-16.
    [27]B. B. Verma, R. K. Pandey. The effects of loading variables on overload induced crack growth retardation parameters [J]. Journal of Materials Science,1999, 34(19):4867-4871.
    [28]赵少汴.多轴疲劳的应变—寿命曲线[J].机械强度,1999,21(4):305-306.
    [29]尚德广,李明,王大康,姚卫星.随机加载下缺口局部应力应变的弹塑性有限元计算[J].机械强度,2001,23(3):332-335.
    [30]赵少汴.局部应力应变法及其设计数据[J].机械设计,2000,(2):1-3.
    [31]常龙,聂宏.基于局部应力应变法估算高周疲劳寿命[J].南京航空航天大学学报,2000,32(1):75-79.
    [32]R.V. Goldstein S.E. Alexandrov. Distributions of stress and plastic strain in notched tensile bars [J]. International Journal of Fracture,1998,91(1):1-11.
    [33]V.G. Grishko. Automation of testing of materials and structures [J]. Strength of Materials,2005,6(2):262-263.
    [34]A Fatemi, Z Zeng. Elasto-plastic stress and strain behaviour at notch roots under monotonic and cyclic loadings [J]. The Journal of Strain Analysis for Engineering Design,2001,36(3):2041-3130.
    [35]E.A. Repetto O. Nhuyen, R.A. Radovitzky. A cohesive model of fatigue crack growth [J]. International Journal of Fracture,2001,110(4):351-369.
    [36]Vasudevan A.K. Sadananda K., Glinka G. Critical parameters for fatigue damage [J]. International Journal of Fatigue,2001,23(1):610-621.
    [37]Wilson S P, Taylor D. Statistical Analysis and Reliability Prediction with Short Fatigue Crack Data [J]. Fatigue and Fracture of Engineering Materials and Structure,1999,21(1):67-76.
    [38]王英玉,姚卫星.材料多轴疲劳破坏准则回顾[J].机械强度,2003,25(3):246-250.
    [39]刘红顺,何庆复,郝海龙.多轴低周寿命预测方法研究[J].铁道机车车辆,2004,24(3):30-32.
    [40]陈旭,高庆,孙训方等.非比例载荷下多轴低周疲劳研究最新进展[J].力学进展,1997,27(3):313-325.
    [41]张巧丽,陈旭.多轴非比例载荷下低周疲劳寿命估算方法[J].机械强度,2004,26(1):76-79.
    [42]You B R, Lee S B. Crieical Review on Multiaxial Fatigue Assessments of Materials [J]. International Journal of Fatigue,1996,18(4):235-244.
    [43]Chiang Y J. Lee Y L. Fatigue Predictions for Components Under Biaxial Reversed Loading [J]. Journal of Testing and Evaluation,1991,19(5):359-367.
    [44]Bonacuse P. J, Kalluri S. In-phase and Out-of-phase Axial-torsional Fatigue Behavior of Haynes 188 Superalloy at 7600C [M]. ASTM Special Technical Publication,1993.
    [45]Soon-Bok Lee, Bong-Ryul You. A critical review on multiaxial fatigue assessments of metals [J]. International Journal of Fatigue,1996,18(4):235-244.
    [46]Macha E. Sonsino C M. Energy Criteria of Multiaxial Fatigue Failure [J]. Fatigue and Fracture Engineering Materials and Struture,1999,22(12):1053-1070.
    [47]Lachowicaz C T. Calculation of the Elastic-plastic Strain Energy Density under Cyclic and Random Loading [J]. International Journal of Fatigue,2001,23(7): 643-652.
    [48]Wang De-jun, Shang De-guang. A new multiaxial fatigue damage model based on the critical plane approach [J]. International Journal of Fatigue,1998,20(3): 241-245.
    [49]Smith K N. Watson P. Topper T H. Stress-strain Function for the Fatigue of Metals [J]. Journal of Materials,1970,5(4):767-778.
    [50]Chen X.Xu, S.Huang D. A Critical Plane Strain Energy Density Criterion for Multiaxial Low-cycle Fatigue Life under Non-proportional Loading [J]. Fatigue and Fracture Enginnering Materials and structure,1999,22(8):679-686.
    [51]Varbani F A.A New Energy-critical Plane Parameter for Fatigue Life Assessment of Various Metallic Materials Subjected to In-phase and Out-of-phase Mult-iaxial Fatigue Loading Conditions [J]. International Journal of Fatigue, 2000,22(4):295-305.
    [52]魏庆同,郎福元,董庆珍,黄建龙.一种新型断料工艺——应力断料的研究[J].机械制造,1982(9)
    [53]You-tang Li, Ping Ma, Changfeng Yan. Anti-fatigued criterion of annularly breached spindle on mechanical design [J], Key Engineering Materials, Vols. 321-323 (2006) p.755-758.
    [54]You-tang Li, Zhiyuan Rui, Changfeng Yan. Uniform model and fracture criteria of annularly breached bars under bending [J]. Key Engineering Materials Vols. 321-323 (2006) p 751-754.
    [55]You-tang Li, Changfeng Yan. Fracture Design of Metallic Matrix Crack for Bi-materials [J]. Key Engineering Materials Vols.306-308 (2006) p7-12.
    [56]Li Youtang, Ma Ping, Zhao Juntian. The Influencing Factors and Assessment Rule of Fatigue Life of Shaft Based on Product Lifecycle Management [J]. Key Engineering Materials,2007,561:2253-2256.
    [57]马平.拉伸载荷下环形切口试件的应力集中系数[J].兰州理工大学学报.2004,30(4):49-52.
    [58]李有堂,于立群.扭转条件下过渡圆角半径及径比对圆轴疲劳寿命的影响[J].兰州理工大学学报.2008,34(5):32-35.
    [59]Youtang Li, Zhiyuan Rui, Changfeng Yan. Effect of wear on the fatigue life of annular notched shaft based on product lifecycle management [J]. Materials Science Forum, Vols.417-418(2010)p.469-472.
    [60]Youtang Li, Ping Ma, Changfeng Yan, Fuyuan Lang. The application of fracture for middle carbon steel in extra-low cycle rotating bending fatigue loading [J]. Key Engineering Materials, Vols.321-323(2006)p.751-754.
    [61]夏松波,张新江,刘占生,徐世昌.旋转机械不对中故障研究综述[J].振动、测试与诊断,1998,18(3):157-161.
    [62]周琛.拉力试验机上下头同轴度误差所产生的应力分析[J].宁夏工程技术,2002,1(3):283-284.
    [63]雷利荣,李卫光.同轴度对中浓液压盘磨机工作的影响[J].造纸科学与技术,2002,21(4):34-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700