用户名: 密码: 验证码:
地震作用下非弹性位移反应规律中若干问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
到目前为止,世界各国规范抗震设计方法仍然是基于R-μ基本原则,对结构所形成的塑性铰机构(延性能力)和强地震动作用下的位移进行有效控制,以保证结构在强地震动作用下的低倒塌概率的基本设计方法。
     各国研究者已对单自由度体系的R-μ-T规律作出了较为广泛的研究,得出的结论较为一致。但是,从各研究者采用“从R到μ”研究方法来看,对于新建和既有结构的评估的适用性不强,而且各研究者采用的滞回模型参数与实际结构的滞回特征存在较大出入。虽然,有些研究者也讨论过滞回模型对R-μ-T规律结果的影响,但是所用的滞回模型也仅仅是停留在理论上的模型,并没有考虑实际结构的力学特征。
     从目前各设计方法中可以看出,大震下的位移控制是目前结构实现的“大震不倒”性态目标的最有效的方式,基于此,各国国家规范和指导性文件都对大震下的结构的位移作出了较为严格的控制。国内外众多研究者针对结构的位移作出过较多研究,大多研究者都集中在结构的响应上,对位移的影响因素的研究较少。尤其是如何方便有效地对多自由度体系在多波输入下的位移反应规律进行识别的研究得更少。
     基于上述的研究大背景,本文主要对以下内容展开分析:
     ①对单自由度体系R-μ-T规律的已有研究成果进行学习和理解,采用与以往研究手段不同的方法对已有的R-μ-T规律进行计算和验证;
     ②采用更贴近实际钢筋混凝土结构的滞回模型,研究不同滞回模型对单自由度体系R-μ-T规律的影响;
     ③针对单自由度体系的位移特征,采用不同的地面运动输入,分析影响单自由度体系弹性位移与非弹性位移比大小的主要因素;
     ④针对现行规范中对近断层地面运动的考虑不足,采用所收集的近断层脉冲型地面运动,分析近断层脉冲型地面运动对结构反应的影响;
     ⑤设计出周期不同的三榀框架,并将其等效为单自由度体系,考虑单、多自由度体系在多波输入下的位移反应规律,初步验证单自由度体系的位移反应规律在多自由度体系中的适用性。
     从上述研究工作中,本文可以初步得出以下结论:
     ①短周期结构的延性需求普遍偏大,在地震力折减系数R较大时(R>2),几乎都超过混凝土结构的延性能力,这一点值得设计人员注意;
     ②大多数情况下,实际三折线模型的延性需求都小于两折线模型,且小的幅度随着自振周期和地震力折减系数的增加而增大。当周期很长时,三折线模型计算得出的延性需求已经趋近于1.0,甚至小于1.0。因此,可以认为,Borzi和Elnashai得出的滞回模型对单自由度体系R-μ-T规律影响不大的结论是不合适的。在实际结构非弹性反应分析中,应考虑采用反映混凝土结构实际滞回特征的滞回模型,以获得更为真实的分析结果。
     ③弹性位移反应谱的形状和谱值受震级和断层距的影响较大,震级越大,弹性反应谱的峰值越大,位移放大系数也越大,相应的峰值点周期也越长;弹性位移反应谱谱值随着断层距的增大而减小,但是位移放大系数随着断层距的增大而增大。
     ④震级对结构的非弹性位移影响较为明显,尤其是当震级较大且地震力折减系数较大时,对中等周期结构的非弹性位移影响最明显,而断层距对结构的位移影响相对较弱。
     ⑤近断层脉冲型地震动对结构的弹性和非弹性反应都影响显著,脉冲型地面运动会增大中长周期结构的强度、位移及延性需求。
     ⑥单自由度体系的位移反应规律在多自由度体系中基本适用,即使单自由度体系位移反应较大的地面运动在多自由度体系中的位移也较大,可以借鉴单自由度体系的位移反应来近似估计多自由度体系的位移。
Up to now, the main method for seismic design of most national codes is still based on R-μrelationship, which is, to ensure low probability of collapse, the designer makes effectively controls on both the plastic mechanism (ductility capacity) and displacement under rare earthquakes.
     There are plenty of existed researches on R-μ-T relationship of single-degree-of-freedom system (SDOF), and the conclusions are consistent. However, the“fromμto R”study methods, the researchers took, are not applicable enough for evaluating the existed buildings and the newly built, the hysteretic models in these studies are inconsistence with the real structures. Some researchers had discussed about the effects of hysteretic models on R-μ-T relationship, however, all the hysteretic models are just theoretical, not considering much about the true mechanical characteristics of the structures.
     In many national design methods, control on displacement under rare earthquakes is the most effective method to ensure“non-collapse uder rare earthquake”of structure. As a result, strict controls on displacement of structure under rare earthquakes are appeared in the national codes and guidance documents. There are many researches on the displacement of the structure, most of them focus on the structural response, but few concern about the influence factors. There are even less researches on how to conveniently identify displacement response rules for multi-degree-of-freedom (MDOF) under multi earthquakes.
     Based on this background, this dissertation does analysis such as follow:
     ①Study the existed research results of R-μ-T relationship of SDOF, calculate and testimony the existed R-μ-T relationship with a totally different research technique;
     ②Choose the hysteretic models which are closer to the reinforced concrete structures, and also study the effects of hysteretic model on R-μ-T relationship for SDOF system;
     ③With considering the characteristics of SDOF system, take different earthquakes to analyze the main factors influence the displacement ratio of linear SDOF system to non-linear;
     ④To make up the deficiency of lack considering the near-fault ground movement in the present national code, a series of near-fault pulse ground movements are collected to analyze its influence to the response of structure;
     ⑤Design three moment frames with different periods, and make equivalent SDOF systems for them, analyze the displacement response rules of the SDOF systems and MDOF systems under multi earthquake waves, initially prove the applicability of displacement rule for SDOF system in MDOF system.
     This dissertation gets the initial conclusions from the analysis above, which includes:
     ①The ductility demands of short period structures are generally big, when the earthquake reduction coefficient R is a large number (R>2), almost all the demands of short period concrete structures exceed their abilities. So, the author advices the designers pay attention to it, and earthquake reduction coefficient R may be as small as possible when designing;
     ②Generally, the ductility demands of tri-linear models are smaller than bilinear models, and the range is getting larger at the period gets long or R gets large. For the relatively long period structure, the ductility demands of tri-linear model are close to 1.0, or even smaller than 1.0. Hence, this dissertation supposes the result of Borzi and Elnashai which indicates the hysteretic models have no influence on the R-μ-T relationship is improper. In the inelastic analysis of real structures, to get the more appropriate results, it should take hysteretic models which could reflect the real hysteretic characteristics of the structures;
     ③The shapes and values of elastic displacement response spectrum are influenced by the magnitude and the fault distance, a bigger peak value of elastic response spectrum would be achieved when the magnitude is larger; The period correspond to the peak point is longer when the magnitude is larger; The values of elastic displacement response spectrum are smaller and the displacement amplification coefficient is larger with remoter fault distance;
     ④The effects of magnitude on the inelastic displacement are significant, special at a larger R, it is most significant for the middle period structures. On the contrary, the fault distance influence little to the displacement;
     ⑤The near fault pulse earthquakes significantly influence both linear and inelastic response of structures. The pulse global movements would magnify the strength, displacement and the ductility demand of middle or long period structures;
     ⑥The displacement rule for SDOF system is basically applicable in MDOF system. The designer could approximate evaluate the displacement of MDOF system by checking the displacement response of the equivalent SDOF system.
引文
[1]白绍良,李刚强,李英民,韦锋.从R-μ-T关系研究成果看我国钢筋混凝土结构的抗震措施[J].地震工程与工程振动, 2006, 26(5):144-151.
    [2]蒋欢军,郑建波,张桦.基于位移的抗震设计研究进展[J].工业建筑, Vol.38, No.7, 2008.
    [3] Bertero V V. Performance-based Seismic Engineering: A Critical Review of Proposed Guidelines[A]. Proceedings of The International Workshop on Seismic Design Methodologies for The Next Generation of Codes[C]. BLED/SLOVENIA/24-27 June 1997.
    [4] Recommendations for the Seismic Design of High-rise Buildings[S]. Council on Tall Buildings and Urban Habitat, 2008.
    [5] An Alternative Procedure for Seismic Analysis and Design of Tall Buildings Located in The Los Angeles Region[S]. Los Angeles Tall Buildings Structural Design Council, 2008.
    [6] Recommended Administrative Bulletin on the Seismic Design & Review of Tall Buildings Using Non-Prescriptive Procedure[S]. Northern California Structural Engineers Association. April, 2007.
    [7] Guidelines for Seismic Design of Tall Buildings. Pacific Earthquake Engineering Research Center[S]. March 21, 2009.
    [8] Moehle J P. Performance-Based Seismic Design of Tall Buildings in the U.S.[J]. The 14th World Conference on Earthquake Engineering, Paper ID: K008.
    [9] Newmark N M and Hall W J. Earthquake Spectra and Design[M]. EERI Monograph Series. Earthquake Engineering Research Institute, Oakland, California, USA, 1982.
    [10] Nassar A A and Krawinkler H. Seismic Demands for SDOF and MDOF Systems[R]. Report No. 95, The John A. Blume Earthquake Engineering Center, Stanford University, Stanford, California, 1991:12-45.
    [11] Krawinkler H and Nassar A A. Seismic Design Based on Ductility and Cumulative Damage Demand and Capacities[A]. Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings[C]. Fajfar and Krawinkler, ed. Elsevier Applied Science, New York, USA, 1992:23-40.
    [12] Vidic T, Fajfar P and Fischinger M. Consistent Inelastic Design Spectra:Strength and Displacement[J].Earthquake Engineering and Structural Dynamics, 1994, 23(3):507-521.
    [13] Miranda Eduardo. Evaluation of Site-Dpendent Inelastic Seismic Design Spectra[J]. ASCE , Journal of Structural Engineering, 1993 , 119 (5): 1319-1338.
    [14] Borzi B and Elnashai A S. Refined Force Reduction Factors for Seismic Design[J]. Journal ofEngineering Structures, 2000, 22(5):1244-1260.
    [15]卓卫东,范立础.结构抗震设计中的强度折减系数研究[J].地震工程与工程振动, 2001, 21(1):84-88.
    [16]翟长海,公茂盛,张茂花,谢礼立,张敏政.工程结构等延性地震抗力谱研究[J].地震工程与工程振动, 2004, 24(1):22-29.
    [17]翟长海,谢礼立.考虑设计地震分组的强度折减系数的研究[J].地震学报, 2006, 28(3): 284-294.
    [18]吕西林,周定松.考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱[J].地震工程与工程振动. 2004, 24(1): 39-48.
    [19]翟长海.最不利设计地面运动及强度折减系数研究[博士][D].哈尔滨:哈尔滨工业大学, 2004.
    [20]刘文渊.强度折减系数及单层钢框架结构影响系数[D].苏州:苏州科技学院, 2008.
    [21]周莉莉.单多自由度体系R-μ规律对比分析中的若干问题[D].重庆大学, 2009.
    [22] Eurocode 8, Design of structures for earthquake resistance[S]. The European Standard EN 1998-1: 2004.
    [23] NZS 4203, General Structural Design and Design Loading for Buildings[S]. New Zealand. Wellington, 1992.
    [24]李刚强.抗震设计的R-μ基本准则及钢筋混凝土典型框架结构超强特征分析[D].重庆:重庆大学, 2006.
    [25] GB50011-2001.建筑抗震设计规范[S].北京:中国建筑工业出版社, 2001.
    [26]杨溥,李英民,赖明.结构时程分析法输入地震波的选择控制指标[J].土木工程学报, 2000, 33(6): 33-37.
    [27]吕红山,赵凤新.适用于中国场地分类的地震动反应谱放大系数[J].地震学报, 2007, 29(1): 67-76.
    [28]俞言祥.长周期地震动衰减关系研究[D].中国地震局地球物理研究所, 2002.
    [29]胡冗冗,王亚勇.地震动瞬时能量与结构最大位移反应关系研究[J].建筑结构学报, 2000, 21(1): 71-76.
    [30]杨红.基于细化杆模型的钢筋混凝土抗震框架非线性动力反应规律研究[博士][D].重庆:重庆建筑大学, 2000.
    [31] GB50010-2002.混凝土结构设计规范[S].北京:中国建筑工业出版社, 2002.
    [32] Panagiotakos T B and Fardis M N. Deformations of reinforced concrete members at yielding and ultimate[J]. ACI Structural Journal, 2001, 98(2): 135-148.
    [33]刘兰花.多自由度体系R-μ规律初步分析及超静定次数对结构超强的影响[D].重庆:重庆大学, 2007.
    [34] Chopra Anil K. Dynamics of Structures[M].北京:清华大学出版社, 2005.
    [35] Bommer Julian J and Elnashai Amr S. Displacement Spectra for Seismic Design[J]. Journal of Earthquake Engineering, 1999, 3(1): 1-32.
    [36] Tolis Stavros V and Faccioli Ezio. Displacement Design Spectra[J]. Journal of Earthquake Engineering, 1999, 3(1): 107-125.
    [37] Faccioli E, Roberto P and Rey J. Displacement Spectra for Long Period[J]. Earthquake Spectra, 2004, 20(2): 347-376.
    [38] GB18306-2001.《中国地震动参数区划图》宣贯教材[S].北京:中国标准出版社, 2001.
    [39] Iwan W D. Estimating Inelastic Response Spectra From Elastic Spectra[J]. Earthquake Engineering and Structural Dynamics, 1980, 8(4): 375~388.
    [40] Kowalsky M J. Displacement-Based-Design: A Methodology for Seismic Design Applied to RC Bridge Columns. Master’s Thesis, University of California at San Diego, 1994.
    [41] Gulkan P and Sozen M A. Inelastic Response of Reinforced Concrete Structures to Earthquake Motions[J]. ACI Journal, 1974, 71(12): 604~610.
    [42] Miranda E and Jorge R G. Evaluation of Approximate Methods to Estimate Maximum Inelastic Displacement Demands[J]. Earthquake Engineering and Structural Dynamics, 2002, 31: 539-560.
    [43] Miranda E. Inelastic Displacement Ratios for Structures on Firm Sites[J]. Journal of the Structural Engineering, ASCE, 2000, 126(10): 1150~1159.
    [44] Ruiz-García J and Miranda E. Inelastic Displacement Ratios for Design of Structure on Soft Soils Sites[J]. Journal of the Structural Engineering, 2004, 130(12): 2051-2061.
    [45]韦承基.弹塑性结构的位移比谱[J].建筑结构学报. 1983, 28(01): 40-48.
    [46]肖明葵,白绍良,刘纲,董银峰.求弹塑性位移谱的一种简化方法[J].重庆大学学报, 2002, 25(7): 99~103.
    [47]翟长海,谢礼立,张敏政.工程结构等强度位移比谱研究[J].哈尔滨工业大学学报, 2005, 37(01): 45~73.
    [48]翟长海,公茂盛,谢礼立,张敏政.工程结构等强度位移比谱影响因素分析[J].哈尔滨工业大学学报, 2005, 37(04): 45~73.
    [49]孙亚民.抗震结构非弹性位移估计研究[D].哈尔滨工业大学, 2006.
    [50] Somerville P, Smith NF, Graves RW, Abrahamson NA. Modification of Empirical Strong Ground Motion Attenuation Relations to Include The Amplitude and Duration Effects of Rupture Directivity[J]. Seismol Res Lett 1997, 68(1): 199–222.
    [51] Somerville P. Development of An Improved Representation of Near-fault Ground Motions[R]. SMIP98 Seminar Proceedings, Oakland, California, 1998. 1-20.
    [52]邬鑫,朱晞.近场地震的方向性及速度脉冲特性效应[C].第六届全国地震工程学会会议, 2002.11.
    [53] Bertero VV, Mahin SA and Herrera RA. A Seismic Design Implications of near-fault San Fernando Earthquake Records [J]. Earthquake Eng. Struct. Dyn, 1978, 6: 31~42.
    [54]刘启方.近断层地震动的基本特征[J].地震工程与工程振动, 2006, 26(01): 1-10.
    [55]马会杰.近场地震下钢筋混凝土框架抗震性能分析[D].湖南:湖南大学, 2009.5.
    [56] Bray Jonathan D and Rodriguez-Marek Adrian. Characterization of forward-directivity ground motions in the near-fault region[J]. Soil Dynamics and Earthquake Engineering, 24 (2004): 815–828.
    [57] Baez Jose I, Miranda Eduardo. Amplication Factors to Estimate Inelastic Displacement Demands for The Design of Structures in The Near Field[C]. The 14th World Conference on Earthquake Engineering, Paper ID: 1561.
    [58] Chopra Anil K and Chintanapakdee Chatpan. Comparing Response of SDF Systems to Near-fault and Far-fault Earthquake Motions in The Context of Spectral Regions[J]. Earthquake Engineering Structural Dynamic, 2001, 30: 1769–1789.
    [59] Maniatakis Ch A, Taflampas I M and Spyrakos C C. Identification of Near-Fault Earthquake Record Charactistics[C]. The 14th World Conference on Earthquake Engineering, Paper ID: S28-004.
    [60]李爽,谢礼立.近场问题的研究现状与发展方向[J].地震学报, 2007, 29(01): 102~111.
    [61]韦韬.近断层速度脉冲对钢筋混凝土框架结构影响的研究[D].中国地震局地球物理研究所, 2005.4.
    [62]江辉,朱晞.近断层地震地面运动的能量与位移延性需求[J].工程抗震与加固改造, 27(4). 2009.8: 59~63.
    [63]杨迪雄,赵岩,李刚.近断层地震动特征对长周期结构地震响应的影响分析[J].防灾减灾工程学报, 27(2). 2007.5.
    [64]李爽,谢礼立.近场脉冲型地震动对钢筋混凝土框架结构影响[J].沈阳建筑大学学报, 2006, 22(3): 406-410.
    [65] Fib(CEB-FIP), Bulletin 25. Displacement-based seismic design of reinforced concrete buildings[R]. Sprint-Digital-Druck, Stutlgart, 2003.
    [66] Fib(CEB-FIP), Bulletin 25.白绍良译.钢筋混凝土建筑结构基于位移的抗震设计[R].重庆大学土木工程学院. 2004.
    [67] Martinez-Rueda J E. Scaling procedure for natural accelerograms based on a system of spectrum intensity scales[J]. Earthquake Spectra. 1998, 14(1):135-152.
    [68]叶列平,马千里,缪志伟.结构抗震分析用地震动强度指标的研究[J].地震工程与工程振动, 2009, 29(4): 9~22.
    [69] Kappos A J. Evaluation of behavior factors on the basis of ductility and overstrength studies[J]. Engineering Structures, 1999, 21: 823-835.
    [70] Housner G W, Jennings P C. The capacity of extreme earthquake motions to damage structures[ J ]. Structural and GeotechnicalMechanics, 1977, A volume honoring N. M. Newmark, Prentice Hall: 102~116.
    [71]韦锋.钢筋混凝土框架和框架剪力墙结构非弹性地震反应性态的识别[博士][D].重庆:重庆大学, 2005.
    [72] Singh J P. Earthquake ground motion: implications for design strctures and reconciling structural damage[J]. Earthquake Spctra, 1985, 1(2), 239-270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700