用户名: 密码: 验证码:
龙门山中段前缘构造特征及油气保存条件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
龙门山中段前缘不仅位于条带状生烃高峰区,具近烃源特点,而且陆相、海陆交互相储集岩十分发育,展布好。兼之受关口断层挤压隆升作用发育了一系列褶皱构造,本区理应是形成油气藏理想区域。但是由于龙门山逆冲推覆体具复杂性、多期性特点,次生断裂十分发育,以至于目前在金马-鸭子河构造带上的油气勘探进展甚微。因此要想在龙门山中段前缘油气勘探获得突破,这就有必要对本区的保存条件进行深入研究。
     本文利用遥感地质解译、核物理氡气测量、土壤地球化学、水文地球化学、大地电场测深等物化探方法以及野外地质调查在龙门山中段前缘识别出多条隐伏断层。这些隐伏断层大都表现出很强的活动性,它既可以造成地下圈闭气藏的泄漏,又可以形成天然气在致密地覆体中运移聚集的通道,进而形成裂缝型气藏,因此研究隐伏断层的活动性具有很好的现实意义。为论证本区主要隐伏断层的活动性以及氡气浓度变化的应震效果,我们应用氡气测量技术对余震进行定时监测,发现余震与氡气浓度变化相关度好,表明氡气测量在判别隐伏断层的存在性以及活动性有很好的应用前景。
     受关口断层推覆上升的影响研究区次级断层多而复杂,发育了北西向、近东西向以及北东东向三组断层,其中尤以北西向断层最为发育,它延伸远,切割深,基本错穿整个莲花口组中上部泥岩盖层。分析本区断层的动力学性质,晚新生代以来受力方向发生了转变,由以前的北东-南西区域应力场转为北西-南东向。现今的北西-南东向应力场又可形成第二次序北北西-南南东向和北东东-南西西向剪切应力场,呈“米”字型力学结构。这亦是北西向断层具左行走滑和北东东向、近东西向断层具右行走滑的力学根源。
     关口断层作为盆山耦合界线,前人普遍认为其为阻水断层,对深部须家河组圈闭封盖性好。但对关口断层封堵性评价只是考虑错穿泥岩及地静压力这两个因素,并没有把关口断层次生断层考虑在内。根据油气水文地球化学和地下水活动规律认为错穿关口上下盘次级断裂的存在使得关口断层为导水断层。本区浅层地下水水型以NaHCO3为主,在较深层-深层则为CaCl2,说明浅层以地表水作用为主,深层封盖性好,以沉积成因水作用为主。因此在单斜带上离关口断层较远,地表水作用较弱的地区,有可能形成水动力圈闭油气藏;聚源-鸭子河背斜构造带上,如果存在盆内隐伏断层发育,或在构造倾伏端裂隙发育处,可以在深层致密储层中形成裂缝型气藏;云西-徐家场鼻状背斜上地表水活跃,背斜顶部容易遭到破坏,故形成浅层气藏的可能性不大,但有望形成深层气藏;都江堰中兴-玉堂地区有可能在向斜内的局部隆起形成气藏,这都应值得注意。
The anterior margin in the middle of Long menshan locates in the zebraic region of producing much hydrocarbon, which is close to the hydrocarbon kitchen. Whatmore, the reservoir rocks in this region are much better, which belong to the terrestrial and paralic facies. This field is a good one to form oil and gas accumulation because there are a lot of folds which are affected by Guankou fault. However, because the Longmen Shan thrust nappe with complex, multi-phase characteristic and secondary fault develops quite well, so the outcome of exploration activity is lessly satisfied in Jinma-Yazihe tectonic belt.So in order to breakthrough oil and gas exploration in the Longmen Mountains front, it is necessary to study the preservation conditions in the area depthly.
     This research has discriminated buried faults in the middle of Long menshan with many methods, such as the explanation of remote sensing geology, the measure of gas radon in nuclear physics, the magnetotelluric method, the magnetotelluric deep sounding and the field investigation. We verify that these buried faults are the important channels to basin, which leap the up and down Guankou fault. We also find that the remote sensing techniques and the geophysicaland geochemical methods are very feasible, serviceable and profitable.
     The main buried faults in the region are much active. They not only cause the disclosure of gas reservoir below ground, but also are the canals to transport gas. So researching the activity of buried faults is significative. To demonstrate the activity of major buried fault in this area and the effect of changes in radon concentration as earthquake happen, we apply the radon gas measurement carried out on regular monitoring of aftershocks,and find that the aftershock is much relevant to the concentration of gas radon, which demonstrates that gas radon not only is used to discriminate buried faults, but also keeps watch on the activity.
     Longmenshan was tensional before the middle period of Norian, which means to be the centripetal fault. After it, the centripetal fault was reversed and Longmenshan moved upward. In this period, the thrust faulting of Longmenshan is very strong and the distance of disposition is much far. The fracture belt of Longmenshan is of sinistral strike slip before Late Pleistocene, and after that, it became to be of right lateral movement. All the drainage systems in this region are opposite“S”.
     We can also analyse Guankou fault and its derivative architecture from mechanics and geological geomorphology. These buried faults are mainly northwest, east north east and latitudinal direction.The northwest faults are developed well, which cutout deeply and leap the upper cap rocks of Lianhuakou formation. We further know that the northwest faults are of sinistral strike slip and the east north east and latitudinal faults are of right lateral movement. The neotectonic movement is strong and the tenso shear is much apparent. The construction of those buried faults is“米”type.
     As the boundary line in the allegiance of basin and mountain, Guankou fault is thought to be the one of resisting water, and covers well the trap of Xujiahe formation. But in the assessment of the luted feature in this fault, we only take value of the leaped mudstone and geostatic stress except secondary fault. According to the geochemistry of hydrology in oil gas and the regular pattern of groundwater, we can conclude that the secondary fault makes Guankou fault to be the one of diversing water. The type of groundwater is NaHCO3 in shallow layer, and CaCl2 in deep zone. This indicates that shallow layer is affected seriously by surface water, and the feature of sealing gland in deep zone is good, which belongs to sedimentogenic water. So there are hydrocarbon reservoirs of hydrodynamic closure in the region, which is far away from Guankou fault, and is affected weakly by superficial water. In the belt of anticlinal structure in Juanyuan-Yazihe, there may be fracture type reservoirs if buried faults and splits are growed well. The surficial water is much in the Yunxi-Xujiachang nose upfold, and the roof of the upfold is damaged easily. So the shallow gas pools are difficult to be generated, but the deep ones can be created. We also notice that gas accumulations may be found in downfolds in Zhongxing-Yutang of Dujiangyan region.
引文
[1]杨克明,朱彤,何鲤.龙门山逆冲推覆带构造特征及勘探潜力分析[J].石油实验地质,2003,25(6):687-694.
    [2]罗志立,龙学明.龙门山造山带的崛起和川西前陆盆地沉降[J].四川地质学报,1992,12(1):1-17.
    [3]刘树根.龙门山冲断带与川西前陆盆地的形成演化[M].成都:成都科技大学出版社,1993.
    [4]刘和甫,梁慧社,蔡立国,等.川西龙门山冲断系构造样式与前陆盆地演化[J].地质学报,68(2):101-117.
    [5]林茂炳,苟宗海等编著.龙门山中段地质[M].成都科技大学,1996.
    [6]李勇.论龙门山前陆盆地与龙门山造山带的耦合关系[J].矿物岩石地球化学通报,1998.
    [7]何鲤,刘莉萍,罗潇,等.川西龙门山推覆构造特征及有利油气勘探区块预测[J].石油实验地质,2007,29(3):247-252.
    [8]邓康龄.龙门山构造带印支期构造递进变形与变形时序[J].石油与天然气地质,2007,28(4):485-490.
    [9]罗志立,金以钟,朱夔玉,等.试论上扬子地台的峨嵋地裂运动[J].1988,34 (1):11- 24.
    [10]时志强,李云,罗萧泉,等.龙门山地区印支期正断层及其对沉积相和储层的控制作用[J].成都理工大学学报(自然科学版),2008,35(6):669-673.
    [11]王凤林.晚新生代龙门山走滑前陆盆地的沉积特征与演化过程[D].成都:成都理工大学,2002.
    [12]四川省地质矿产局.中华人民共和国地质矿产部地质专报.(一)区域地质,第23号[M].四川省区域地质志.北京:地质出版社, 1991.
    [13]四川省地质矿产局化探队1∶5万绵竹幅地质图[R].成都:四川省地质矿产局,1995.
    [14]四川省地质矿产局化探队1∶5万清平幅地质图[R] .成都:四川省地质矿产局,1995.
    [15]梅安新,彭望琭,秦其明,等.遥感导论[M].高等教育出版社,2001.
    [16]王多义,吴征,朱永明.景谷盆地遥感地质解译及原盆地恢复[J].成都理工大学学报(自然科学版),2003,30(6):597-602.
    [17]王多义,邓美洲,童纯菡,等.川西石亭江地区遥感地质解译及构造解析[J].成都理工大学学报(自然科学版),2006,33(4):390-393.
    [18]庞河清,王多义,蔡左花.川西什邡地区隐伏断层识别及其对流体的控制作用[J].物探与化探,2010,31(1):14-18.
    [19]贾国相,赵友方,姚锦其,等.氡气勘查地球化学技术的研究与应用——氡气地球化学特性、方法原理、异常模式[J].矿产与地质,2005,19(1):60-64.
    [20]贾文懿,方方,苗放.核地球物理的理论与实践[M].四川大学出版社,2001.
    [21]贾文懿,方方,周蓉生等.理想条件下氡及其子体运移规律研究[J].成都理工学院学报,1999,26 (1):34-37.
    [22]葛君伟,贾文懿.放射性方法在我国寻找油气藏中的应用进展[J].物探与化探,1992,16(4):259-266.
    [23]贾文懿.放射性勘探的科技进展[J].物探与化探,1989,13(5):381-385.
    [24]赵琦,李萍.成都地区隐伏构造元素的地球化学特征[J].物探化探计算技术,2002,24(3):257~262.
    [25]王崇云.地球化学找矿基础[M].地质出版社. 1987.
    [26]文冬光,沈照理,钟佐棠.地球化学模拟及其在水文地质中的应用[J].地质科技情报,1995,14(1):99-104.
    [27]曾溅辉.地下水地球化学模拟[J].地质论评,1993,39(6):490-496.
    [28]鲁人齐.非地震勘探方法在龙门山前构造研究中的应用[D].成都:成都理工大学,2008
    [29]邓美洲.非地震勘探方法在隐伏构造研究中的应用[D].成都:成都理工大学,2006.
    [30]杨庆锦.大地电场岩性测深原理及方法技术的探讨.《地球物理学进展》1999.3.
    [31]王多义,杨庆锦.大地电场岩性测深技术在绵竹地区地热资源勘查中的应用[J].《地质与勘探》,2004.
    [32]李勇,曾允孚.龙门山逆冲推覆作用的地层标识[J].成都理工学院学报,1995,22 (2):1-9.
    [33]金文正,汤良杰,杨克明,等.龙门山冲断带构造特征研究主要进展及存在问题探讨[J].地质评论,2008,54(1):37-46.
    [34] Li Y, Allen P A, Densmore A L, etc. Evolution of the Longmen Shan Foreland Basin (Western Sichuan, China) during the Late Triassic Indosinian Orogeny[J]. Basin Research, 2003,15, 117-138.
    [35]李勇,周荣军,A L Densmore,等.龙门山断裂带走滑方向的反转及其沉积与地貌标志[J].矿物岩石,2006,26(4):26-34.
    [36]李智武,刘树根,陈洪德,等.龙门山冲断带分段-分带性构造格局及其差异变形特征[J].成都理工大学学报,2008,35(4):440-454.
    [37]王多义,邓美洲,童纯菡,等.川西石亭江地区遥感地质解译及构造解析[J].成都理工大学学报(自然科学版),2006,33(4):390-393.
    [38]龙学明.龙门山中北段地史发展的若干问题[J].成都地质学院报,1991,18(1):8-15.
    [39]王金琪,安县构造运动[J].石油与天然气地质,1990.
    [40]苟宗海.四川大邑-汶川地区侏罗-第三系砾岩特征及沉积环境[J].中国区域地质, 2001,20(1):25-32.
    [41]田小彬.龙门山北段构造特征及油气前景探讨[D].成都:成都理工大学,2009.
    [42]吕志洲.龙门山冲断带构造特征与油气勘探前景研究[D].成都:成都理工大学能源学院,2008.
    [43]杨克明.非常规油气藏形成的机理及关键的开发技术-以川西凹陷上三叠统气藏为例[D] .成都理工大学能源学院,2005.
    [44]罗萧泉,郭东晓,周文娅.论龙门山中段前缘油气成藏条件[J].岩相古地理,1999,19(2):52-66.
    [45]罗啸泉,陈兰.川西坳陷形成演化及其与油气的关系[J].油气地质与采收率,2004,11(1):16-19.
    [46]王亮国,周文英,唐立章,等.川西坳陷中段天然气资源评价[A].杨克明,徐进.川西坳陷致密碎屑岩领域天然气成藏理论与勘探开发方法技术[C].北京:地质出版社,2004.91~97.
    [47]杨克明.论川西坳陷低孔渗碎屑岩领域天然气勘探前景[A].杨克明,徐进.川西坳陷致密碎屑岩领域天然气成藏理论与勘探开发方法技术[C].北京:地质出版社,2004.28~34.
    [48]朱彤,梁恩宇.龙门山中段前缘鸭子河构造深层须家河组油气勘探[J].成都理工学院学报,2001,28(1):59-63.
    [49]叶军.川西坳陷上三叠统下部烃源岩评价[A].杨克明,徐进.川西坳陷致密碎屑岩领域天然气成藏理论与勘探开发方法技术[C].北京:地质出版社,2004.73~79.
    [50]罗萧泉,唐贵宾.龙门山中段前缘须家河组裂缝特征与油气的关系[J].沉积与特提斯地质,2008,28(3):96-100.
    [51]朱彤,李秋野,梁恩宇,等.川西金马-聚源地区中侏罗统沙溪庙组油气勘探前景研究[A].杨克明,徐进.川西坳陷致密碎屑岩领域天然气成藏理论与勘探开发方法技术[C].北京:地质出版社,2004.131~137.
    [52]郭正吾.四川盆地西部致密碎屑岩含气领域勘探理论与实践[A].杨克明,徐进.川西坳陷致密碎屑岩领域天然气成藏理论与勘探开发方法技术[C].北京:地质出版社,2004.17~21.
    [53]邓康龄.川西坳陷中段构造与演化[A].杨克明,徐进.川西坳陷致密碎屑岩领域天然气成藏理论与勘探开发方法技术[C].北京:地质出版社,2004.63~72.
    [54]匡建超,曾剑毅,储昭奎,等.川西龙门山前缘主要断层封堵性评价[J].天然气工业,2008,28(11):42-46.
    [55]符勇,姜振泉,马丽,等.论油气成藏的水动力作用[J].新疆石油地质,2005,26(5):517-519.
    [56]李伟,赵克斌,刘崇喜.含油气盆地水文地质研究[M].北京:地质出版社,2008.
    [57]邱世祥.油气水文地质学[M].西北大学出版社,1991.
    [58]何登发,贾承造.冲断构造与油气聚集[J].石油勘探与开发,2005,32(2):55-62.
    [59]李勇.论龙门山前陆盆地与龙门山造山带的耦合关系[J].矿物岩石地球化学通报,1998.
    [60]李勇,曹叔尤,周荣军,等晚新生代岷江下蚀速率及其对青藏高原东缘山脉隆升机制和形成时限的定量约束[J].地质学报,2005.
    [61]刘顺.论龙门山中北段东缘印支运动晚幕的性质[J].成都理工学院学报,1998,25(4):524-528.
    [62]王国芝,刘树根,赵锡奎.龙门山中段川西前陆盆地初始盆山边界及其变迁[J].成都理工大学学报(自然科学版),2008,35(4):431-439.
    [63]李书兵,陈伟,简高明,等.龙门山前中段地震剖面的构造分析[J].西南石油学院学报,2006,28(2):20-24.
    [64]李月,周瑶琪,颜世永,等.龙门山造山带构造演化模式的建立[J].中国石油大学学报(自然科学版),2008,32(2):21-20.
    [65]苟宗海,石和.四川都江堰、彭州、什邡地区的侏罗系[J].地层学杂志, 1997,21(3):192-202.
    [66]苟宗海,吴山,赵兵.四川汶川、都江堰地区五龙沟砾岩的地质特征[J].矿物岩石,1999,19(4):29-34.
    [67]林茂炳,苟宗海,吴山.龙门山地质考察指南[M].成都:成都科技大学出版社, 1997.
    [68]陈国光,计凤桔,周荣军,等.龙门山断裂带晚第四纪活动性分段的初步研究.2007,29(3):657-673.
    [69]马永旺,杨尽.龙门山中段推覆构造的变形特征[J].成都理工学院学报,2001,28(3):236-240.
    [70]胡新伟,邓江红.龙门山中段推覆构造带构造特征[J].成都理工学院学报,1996,23(3):101-106.
    [71]宋鸿彪,刘树根.龙门山中北段重磁场特征与深部构造的关系[J].成都地质学院学报,1991,18(1):74~82.
    [72]陈竹新,贾东等.龙门山前陆褶皱冲断带的平衡剖面分析[J].地质学报,2005,79(1):38~45.
    [73]王二七,孟庆任等.龙门山断裂带印支期左旋走滑运动及其大地构造成因[J].地学前缘,2001,8(2):375~384.
    [74]杨克明,叶军,吕正祥.川西凹陷上三叠统成藏年代学特征[J].石油与天然气地质,2005,26(2):208-213.
    [75]刘树根,赵锡奎,罗志立,等.龙门山造山带-川西前陆盆地系统构造事件研究[J].成都理工学院学报,2001,29(3):221-230.
    [76]吴山,赵兵,胡新伟.再论龙门山飞来峰[J].成都理工学院学报,1999,26(3):221-224.
    [77]汤良杰,杨克明,金文正,等.龙门山冲断带多层次滑脱带与滑脱构造变形[J].中国科学D辑:地球科学,2008,38(增刊Ⅰ):30-40.
    [78]刘顺,刘树根,宋春彦,等.龙门山中央断裂运动学研究.成都理工大学学报,2008,35(4):463-470.
    [79]徐开礼,朱志澄.构造地质学[M].北京:地质出版社,1989.
    [80]罗志立,赵锡奎,刘树根等.龙门山造山带的崛起和四川盆地的形成和演化.成都科技大学出版社,1994.
    [81]曹伟.龙门山推覆构造带中段前缘构造浅析[J].石油实验地质,1994,16(1):35-42.
    [82] Burchfiel B C,Chen Z,Liu Y,etc.Tectonics of the Longmen Shan and adjacent regions, central China[J].International Geology Review,1995,37(8):661-735.
    [83] Chen S, Wilson C J L, Luo Z, etc. The evolution of the western Sichuan foreland basin, southwestern China[J]. Journal of Southeast Asia Earth Sciences, 1994,10: 159-168.
    [84] Jia D, Wei G, Chen Z, etc.Longmen Shan fold-thrust belt and its relation to the western Sichuan Basin in central China: New insights from hydrocarbon exploration[J]. AAPG Bulletin,2006,90(9): 1425-1447.
    [85] K.Jill Hammond.James P.Evans.Geochemistry,mineralization.structure,and permeabilityof a normal-faule zone, Casino mine,Alligator Ridgedistrict,north central Nevada[J]. Journal of Structural Geology,2003(25)717-736.
    [86] varhegyi A et al. Experimental study of radon transport in water as testfor a transportation microbublle model[J]. journal of applied geophsics,1992,vol.29.
    [87] Price L C.critical overview and proposed working model of surface geochemical exploration[J]. Unconventional methods in exploration for petroleum and naturalgasIV. Southern Methodist Univ. press,1986.
    [88] N.Kulagin. Theory of electronic structure of rare earths and actinides in Rn+n:[L]clusers[J]: PhysicaB,1998(245):52-60.AdamR.Hutter. Spatial and temporal variations of soil gas 220Rn and 220Rn at twosites in new jersey[J]. Enviroment Internation,1996(22):455-469.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700