用户名: 密码: 验证码:
Sn-Cu-Bi合金液—液结构转变及其对凝固和钎焊性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,压力或温度诱导液-液结构转变现象的发现打破了液态结构和性质连续渐变的传统认知,深入认识液-液结构转变的物理本质及其规律,对认识液态金属合金的本质以及新材料的开发无疑具有重要的意义。目前,对无铅钎料的研究和开发仍然局限于成分选择、配比优化及微量元素的影响等方面,很少有人关注熔体热历史对无铅钎料组织和性能的影响。
     本文以Sn-0.7Cu-xBi合金(Bi质量分数分别为0%,3%,5%,7.5%和10%)为研究对象,从温度诱导的液-液结构转变这一新视角出发,探索了熔体结构状态变化及其无铅钎料组织和性能的相关性,同时考察了Bi元素对Sn-0.7Cu钎料组织和钎焊性的影响。主要研究内容及结果如下:
     (1)采用直流四电极法研究了熔化过程中Sn-0.7Cu-xBi合金电阻率—温度关系,结果显示Bi的添加降低了合金熔点,同时增大了熔程;而随后连续两轮升、降温的电阻率—温度曲线均出现了异常变化,并在第一轮升温后表现出可逆转变特征。
     (2)通过实验探讨了Bi含量、液液结构转变对凝固的影响,发现Bi含量越高,Sn-0.7Cu-xBi合金凝固组织中β-Sn和富Cu相越细小;经历液-液结构转变的Sn-0.7Cu-xBi合金其凝固组织更加均匀、细小。
     (3)将由铁模凝固实验所得钎料试样在铜板上进行铺展实验。结果显示Bi的加入提高了Sn-Cu(Bi)钎料的润湿性能,尤其是Bi含量在0~3%时;液-液结构转变对Sn-0.7Cu合金润湿性的影响较为显著。
     (4)对铺展实验试样在150℃下进行了0,120,240,480h的时效处理。接头组织观察表明,Bi的添加增大了钎焊态下界面IMC的晶粒尺寸,却抑制了时效过程中IMC的生长;液-液结构转变后的Sn-Cu(Bi)钎料/Cu界面IMC的形成和生长均受到了抑制。
     (5)采用单剪搭接接头形式,对Sn-Cu(Bi)钎料/Cu接头剪切强度进行了测试,结果表明,随Bi含量的增加接头剪切强度先增大,后减小,Bi含量在3%时最大;在Bi含量相同时,液-液结构转变提高了钎料本身接头剪切强度。综合看经历液-液结构转变的Sn-0.7Cu-3Bi钎料的综合钎焊性最好。
In recent years, pressure or temperature-induced liquid-liquid structure transitions (L-LSTs) have been found in liquids, which challenge our conventional picture of liquid as entity with a continuously varying averaged structure. In-depth investigation on the nature and rule of L-LSTs is of significance to understand the structure of liquid substance and to develop new materials. So far, the studies on lead-free solders materials mainly focus upon the selection of components and their optimization of the mixture ratio, and the influence of minor elements on various properties. Little attention has been paid to the effect of the melt heat history on the microstructures and properties of lead-free solders.
     In this paper, Sn-0.7Cu-xBi (x=0, 3, 5, 7.5, 10 wt %) lead-free solders have been chosen as the investigation object. From the new viewpoint of temperature induced L-LST, the effect of L-LST on microstructures and soldering properties of Sn-0.7Cu-xBi are investigated. Besides, the effect of Bi on the microstructure and solderability of Sn-0.7Cu solders is studied. The main contents and conclusions are as follows:
     (1) Temperature dependence of electrical resistivities of Sn-0.7Cu-xBi solders has been surveyed by the DC four-probe method. The results show that the addition of Bi in the Sn-0.7Cu solder decreases melting point while increases the melting temperature range. And the anomalous changes can be observed on the resistivity-temperature (ρ-T) curves at certain temperature ranges in two experimental cycles, and the anomalous changes are reversible after the first cycle heating.
     (2) The effect of Bi and L-LST on the microstructures of Sn-Cu-Bi solders has been investigated by solidification experiments. It is found thatβ-Sn and Cu-rich phase become finer with the increase of Bi. Moreover, the microstructures become more homogeneous and finer after the melts have experienced L-LST.
     (3) Spreadability tests of the iron-mold solidified sample on Cu substrate have been carried out. The results show that the addition of Bi can improve the wettability of Sn-Cu(Bi) solders, especially the addition of 0~3 wt %Bi. And the effect of L-LST on the wettability of Sn-0.7Cu solder is more obvious.
     (4) The consequent thermal aging treatment for the solder joint has been performed at the temperature of 150℃for 0, 120, 240 and 480 h. The results show that the addition of Bi increases the size of Cu-Sn IMC in as-soldered joints, but inhibits the development of Cu-Sn IMC layer in thermally aged solder joints; while L-LST restrains the nucleation and development of Cu-Sn IMC.
     (5) The shear strength of soldered lap-joint specimen has been measured. The results show that the shear strength of Sn-0.7Cu-xBi solders/Cu joints firstly increases and then decreases with the increase of Bi, and reaches the maximum strength at 3wt%Bi. L-LST enhances the shear strength of Sn-Cu(Bi) soldered joints. In general, Sn-0.7Cu-3Bi solder experienced L-LST has the best comprehensive properties.
引文
[1]祖方遒.液态合金结构变化的研究[D].中国科学院固体物理研究所博士论文,2002
    [2]冼爱平,王连文.液态金属的物理性能[M].科学出版社,2006
    [3] S.R. Elliott. Medium-range order in the structure of amorphous solids [J]. Nature, 1991, 354:445-452
    [4]陆坤权.液态物理进展概述[J].物理学报,1994,23(5):257~265
    [5] C. Massobrio, A. Pasquarello, and R. Car. Short- and intermediate-range structure of liquid GeSe2[J], Phys. Rev. B, 2001, 64:144205
    [6]边秀房,王伟民.金属熔体结构[M].上海交通大学出版社,2003
    [7]郭景杰,傅恒志.合金熔体及其处理[M] .机械工业出版社,2005
    [8]李先芬.液态熔体结构转变及其对凝固的影响[M].合肥工业大学出版社,2007
    [9] B. Gebhrdt, Halm Th, and W. Hoyer. The structure of liquid Ga-In alloys[J]. J. Non-Crys. Solids., 1995, 192&193:306-308
    [10] O. Uemura, T. Usuk, et al. Radial Distribution Studies of TI-S Alloys in Liquid and Amorphous States[J]. J. Phys. Soc. Japan. 1996, 65(7):2106-2111
    [11] G. Jacobs, I. Egry, D. Holland-Moritz, et al. Short-Range Order in Undercooled Liquid Metals[J]. J. Non-Cryst. Solids., 1998, 223-234: 396-402
    [12] S. Takeuchi, Moritaz, and T. Lida. Fundamental Study on The Viscosity Measurement of Liquid Metals by The Capillary Method (Studies on The Viscosity of Liquid Metals (1, 2))[J]. J. Jap. Inst. Metals., 1971, 35(3):221-223
    [13]王强,贾均,李培杰等.Al-Si合金熔体电阻率及结构的研究[J].铸造,1998,3:7-9
    [14] B. Grosdidier, J.P. Lutz, S. Saadeddine, et al. Structure and Electrical Resistivity of Liquid Ni-Ge Alloys[J]. J. Non-Cryst. Solids., 1996, 205-207: 393-401
    [15] Yokoyama, Isao. Relationship between Structural, Thermodynamic, Transport and Surface Properties of Liquid Metals: A Hard-sphere Description[J]. Phys. B Condens Matter., 2000, 291(1): 145-151
    [16] Y. Plevachuk, V. Sklyarchuk, A. Yakymovych, et al. Density, Viscosity, and Electrical Conductivity of Hypoeutectic Al-Cu Liquid Alloys[J]. Metall. Mater. Trans. A, 2008, 39A: 3040-3045
    [17]耿浩然,孙春静,杨中喜等.金属熔体黏度结构相关性的分子动力学模拟[J].物理学报,2006,55(3):1320-1324
    [18] T.K. Gu, X.F. Bian, J.Y. Qin, et al. Ab Inito Molecular Dynamics Simulations of Liquid GaSb and InSb[J]. Phys. Rev. B, 2005, 71: 104206
    [19] Poole, P.H. Grande, T. Angell, et al. Polymorphic Phase Transitions in Liquids and Glasses[J]. Science, 1997, 275: 322-323
    [20] Katayama, Y. Mizutani, T. Utsumi, et al. First-order Liquid-liquid Phase Transition in Phosphorus[J]. Nature, 2000, 403: 170-173
    [21] J.L. Yarger, and G.H. Wolf. Polymorphism in Liquids[J]. Science, 2004, 306: 820-821
    [22] J. Hafner. Structure and Thermodynamics of Liquid Metals and Alloy[J]. Phys. Rev. A, 1977, 16: 351-364
    [23] D.J. Lacks. First Order Amorphous-Amorphous Transformation in Silica[J]. Phys. Rev. Lett., 2000; 84: 4629-4632
    [24] F.P. Bundy. Melting of Graphite at Very High Pressure[J]. J. Chem. Phys., 1963, 38: 618-630
    [25] M.P. Grumbach, and R.M. Martin. Phase Diagram of Carbon at High Pressures and Temperatures[J]. Phys. Rev. B, 1996, 54: 15730-15741
    [26] J.N. Glosli, and F.H. Ree. Liquid-Liquid Phase Transformation in Carbon[J]. Phys. Rev. Lett., 1999, 82: 4659-4662
    [27] A.C. Mitus, A.Z. Patashinskii, and B.I. Shumilo. The Liquid-Liquid Phase Transition[J]. Phys. Lett. A, 1985, 113(1): 41-44
    [28] P. H. Poole, T. Grande, C.A. Angell, et al. Polymorphic Phase Transitions in Liquids and Glasses[J]. Science, 1997, 275: 322-323
    [29] A.K. Soper, and M.A. Ricci. Structures of High-Density and Low-Density Water[J]. Phys. Rev. Lett., 2000, 84: 2881-2884
    [30] O. Mishima, and H.E. Stanley. The Relationship Between Liquid, Supercooled and Glassy Water[J]. Nature, 1998, 396: 329-335
    [31] M. Togaya. Pressure Dependences of the Melting Temperature of Graphite and the Electrical Resistivity of Liquid Carbon[J]. Phys. Rev. Lett., 1997, 79: 2474-2477
    [31] K. Koga, H. Tanaka, and X.C. Zeng. First-Order Transition in Confined Water between High-Density Liquid and Low-Density Amorphous Phases[J]. Nature, 2000, 408: 564-567
    [32] J.Y. Raty, J.P. Gaspard, T.L. Bihan, et al. Local Order of the High-Pressure Metallic Phase of Liquid Selenium: a Diffraction Study[J]. Phys:Condens. Matter, 1999,11: 10243-10249
    [33] Y. Katayama, T. Mizutani, W. Utsumi, et al. A First-Order Liquid-Liquid Phase Transition in Phosphorus[J]. Nature, 2000, 403: 170-173
    [34] G.S. Monaco, Falconi, W.A. Crichton, et al. Nature of the First-Order Phase Transition in Fluid Phosphorus at High Temperature and Pressure[J]. Phys. Rev. Lett., 2003, 90 (25):255701-255704
    [35] P. McMillan. Phase Transitions: Jumping between Liquid States[J]. Nature, 2000, 403: 151-152
    [36]秦敬玉,边秀房,王伟民.Al和Sn液态结构的温度变化特性[J].物理学报,1998,47(3):438-444
    [37] F.Q. Zu, Z.G. Zhu, L.J. Guo, et al., Liquid-Liquid Phase Transition in Pb-Sn melts[J]. Phys. Rev. B, 2001, 64: 180203 ( R )
    [38] F.Q. Zu, X.F. Li, L.J. Guo, et al. Temperature Dependence of Liquid Structures in In–Sn20: Diffraction Experimental Evidence[J]. Phy. Lett. A , 2004, 324: 472–478
    [39] F.Q. Zu, Z.G.Zhu, B. Zhang, et al. Post-Melting Anomaly of Pb-Bi Alloys Observed by Internal Friction Technique[J]. J. Phys. Condens. Matter., 2001, 13 : 11435-11442
    [40] Y. Plevachuk, V. Sklyarchuk, S. Eckert, et al. Some Physical Data of the Near Eutectic Liquid Lead–Bismuth[J]. J. Nucl. Mater., 2008, 373: 335-342
    [41] Z.G. Zhu, F.Q. Zu, L.J. Guo, et al. Internal Friction Method: Suitable also for Structural Changes of Liquids[J]. Mater. Sci. Eng. A, 2004, 370: 427-430
    [42] L. Wang, X. Bian, and J. Liu. Discontinuous Structural Phase Transition of Liquid Metal and Alloys (1) [J]. Phys. Lett. A, 2004, 326: 429-435
    [43]刘建同,刘广荣,孙民华.液态Al(86-x)Cu(10+x)Ce4的高温粘度及结构变化[J].山东大学学报(工学版),2004,34(1):22-24
    [44] P. Terzieff. A Pseudopotential Approach to the Viscosity of Liquid Cu-Based Alloys[J]. J. Alloy. Compd., 2009, 473: 195-200
    [45] C.J. Sun, H.R. Geng, and L.L. Ji. Rheological Behavior of Metal Pb, Sb, Bi, Sn Melts[J]. J. App. Phys., 2007, 102:034901
    [46] C.S. Liu, G.X. Li, Y.F. Liang, et al. Quantitative Analysis Based on the Pair Distribution Function for Understanding the Anomalous Liquid-Structure Change in In20Sn80[J]. Phys. Rev. B, 2005, 71: 064204
    [47] A. Wu, L. Guo, C. Liu, et al. Internal Friction Behavior of Liquid Bi-Sn Alloys[J]. Physica B, 2005, 369: 51–55
    [48] A.Q. Wu, L.J. Guo, C.S. Liu, et al. The Experimental Viscosity and Calculated Relative Viscosity of Liquid In-Sn Alloys[J]. Physica B, 2007, 392: 323-326
    [49] X.F. Li, F.Q. Zu, L.J. Liu, et al. Effect of Sn on Reversibility of Liquid-Liquid Transition in Bi-Sb-Sn Alloys[J]. J. Alloy. Compd., 2008, 453: 508-512
    [50] F.Q. Zu, X.F. Li, H.F. Ding, et al. Electrical Resistivity of Liquid Bi-Sb Alloys[J]. Phase Transit. 2006, 79: 277-283
    [51] X.F. Li, F.Q. Zu, H.F. Ding, et al. Anomalous Change of Electrical Resistivity with Temperature in Liquid Pb-Sn Alloys[J]. Physica B, 2005, 358(1-4): 126-131
    [52] X.F Li, F.Q. Zu, L.J. Liu, et al. Hump Phenomenon on Resistivity-Temperature Curve in Liquid Bi, Sb and their Alloys[J]. Phys. Chem. Liq., 2007, 45: 531-539
    [53] F.Q. Zu, R.R. Shen, Y. Xi, et al. Electrical Resistivity of Liquid Sn-Sb Alloy[J]. J. Phys.: Condens. Matter, 2006, 18: 2817-2823
    [54] J. Yu, Y. Zhang, F.Q. Zu, et al. The Abnormal Changes of Electrical Resistivity in Liquid Pb-In Alloys[J]. Phys. Chem. Liq., 2006, 44: 401-408
    [55]胡成明,李先芬,祖方遒等.Sn-Bi合金熔体可逆液液结构转变的研究[J].原子分子物理学报,2008,25(4):1003-1005
    [56] J. Chen, F.Q. Zu, Z.Y. Huang, et al. Temperature dependence of Structure and Physical Properties of Eutectic InSn49.1 Melt[J]. Phys. Chem. Liq., 2009, 47: 95-102
    [57] X.F. Li, C.M. Hu, F.Q. Zu, et al. Liquid-Liquid Structure Transition and its Effect on Solidification of Sn-Sb Alloy[J]. Kovove Mater., 2009, 47: 109-113
    [58]边秀房,刘相法,马家骥.铸造合金遗传学[M].济南:山东科技出版社,1998
    [59]КОЛОТУХИНЗБ,ВАУМВА,КУЛЕФОВАЕА, et al.Влияниестроенияисвойствметаллическогорасплаванаклчествоотливок[J].Сталь, 1992, 7: 21-28
    [60] V. Sidorov, M. Calvo-Dahlborn, U. Dahlborg, el al. Physical Properties of Some Iron Based Alloys in Liquid and Amorphous States[J]. J. Mater. Sci., 2000, 35: 2255-2262
    [61] J. Namkung, M.C. Kim, and C.G. Park. Magnetic Properties of Melt Quenched Ni–Fe Alloy Strips[J]. Mater. Sci. Eng. A, 2004, 375-377:1116-1120
    [62] Y.L. Tang, M.J. Kramer, K.W. Dennis, et al. On the Control of Microstructure in Rapidly Solidified Nd-Fe-B Alloys through Melt Treatment[J]. J. Magn. Magn. Mater., 2003, 267:307-315
    [63] C. Guang, Y. Jianwei, and F. Hengzhi. Influence of the Melt Heat History on the Solid/Liquid Interface Morphology Evolution in Unidirectional Solidification[J]. J.Mater. Sci. Lett., 1999, 18(19): 1571-1573
    [64]耿兴国,陈光,傅恒志.熔体过热对定向凝固界面稳定性的影响[J].金属学报, 2002,38 (3):225-229
    [65]陈光,俞建威,谢发勤等.熔体过热历史对Ni基高温合金定向凝固界面形态的影响[J].金属学报.2001,37(5):488-492
    [66]殷凤仕,管恒荣,孙晓峰等.铸态镍基高温合M963的液态结构和熔体处理[J].金属学报,2005,41(11):1190-1194
    [67]余乾,肖程波,宋尽霞等.熔体处理时间对铸态镍基高温合金K465组织和力学性能的影响[J].航空材料学报,2005,25(1):1-4
    [68] C. Sujuan, B. Xiufang, Z. Jingxiang, et al. Effect of Thermal History on Viscosity of In-55wt%Sb Hypoeutectic Alloy Melt. Rare Metal Materials and Engineering, 2006, 35(7): 1113-1116
    [69]张曙光,何礼君,张少明等.绿色无铅电子焊料的研究应用进展[J].材料导报,2004,18(6):72-75
    [70]苏佳佳,文建国.电子产品中的无铅焊料及其应用发展[J].电子封装,2007,7(8):5-8
    [71]田民波,马鹏飞.电子封装无铅化技术进展(待续)[J].电子工艺技术,2003,24(6):231-237
    [72]表面贴装行业的无铅化现状趋势[J].现代表面贴装资讯,2004,2:24
    [73]林培豪,刘心宇,成钧.铜铟铋硫对Sn-Ag基无铅焊料性能的影响[J].电子元件材料,2003,10(22):33-34
    [74]吴安如,戴晓.Sn-Ag-Sb-M系无铅焊料的基本性能研究[J] .湖南工程学院学报,2004,3(14):29-32
    [75]孟桂萍.Sn-Ag和Sn-Zn及Sn-Bi系无铅焊料[J].电子工艺技术,2002,23(2):75-76
    [76] W. Cuviello, and D. Coulton. Using Thin Film High-Density Inter-Connect (HDI) Technology to Improve Design Performance and Efficiency[J]. Microwave Product Digest, 2005(1): 36-50, 52, 54
    [77]戴志锋,黄继华.微电子组装中Sn-Zn系无铅钎料的研究开发[J].电子工艺技术,2004,1(1):5-8
    [78]吴文云,邱小明,孙大谦等.Sn-Zn-Bi无铅焊料成分设计[J].吉林大学学报(工学版),2004,4(34):538-543
    [79] J. Zhou, Y. Sun, and F. Xue. Properties of Low Melting Point Sn-Zn-Bi Solders[J]. J. Alloy. Compd., 2005, 397: 260-264
    [80]任晓雪,李明,毛大立.合金元素对Sn-Zn基无铅焊料高温抗氧化性的影响[J].电子元件材料,2004,11(23):40-44
    [81]于大全,赵杰,王来.稀土元素对Sn-9Zn合金润湿性的影响.中国有色金属学报, 2003,13(4):1001-1004
    [82]郑玉军,张启运.Sn-In-Zn三元系相图和无铅钎料成分的探讨[J].物理化学学报,1998,14(12):1098-1103
    [83]黎小燕,陈国海.Sn-Zn无铅钎料的研究发展[J].电子工艺技术,2004,7(4):151
    [84]贾红星,黄金亮,张柯柯.Ag对Sn-57Bi无铅钎料组织和性能的影响[J].河南科技大学学报(自然科学版),2004,25(3):10-13
    [85]汤清华,潘晓光.添加Sn-Ag对Sn-Bi焊接特性的改善[J].电子元件材料,1999,18(4):27-31
    [86]李宇君,秦连城,杨道国.无铅焊料在电子组装封装中的应用[J].电子工艺技术,2006,1(27):1-7
    [87]史耀武,夏志东,雷永平.电子组装生产的无铅技术发展趋势[J].电子工艺技术,2005,26(1):6-9
    [88] J.Y. Park, J.S. Ha, C.S. Kang, etal. Study on the Soldering on Partial Melting State(1) Analysis of Surface Tension and Wettability[J]. Journal of Electronic Materials, 2000, 29(10): 1145-1152
    [89] S.H. Huh, K.S. Kim, and K. Suganuwa. Effect of Ag Addition on the Microstructural and Mechanical Properties of Sn-Cu Eutectic Solder[J]. Materials Transactions, 2001, 42(5): 739-744
    [90] J.S. Hwang, Z. Guo, and H. Koenigsmann. A High Performance Lead-Free Solder: the Effects of In on 99.3Sn/0.7Cu[J]. Soldering and Surface Mount Technology, 2001, 13(2): 7-13
    [91] C.M. WU, D.Q. YU, C.M.T. LAW et al. Microstructure and Mechanical Properties of New Lead-Free Sn-Cu-RE Solder Alloys[J]. Journal of Electronic Materials, 2002, 31: 928-932
    [92] John H.L. Pang, B.S. Xiong, and T.H. Low. Low Cycle Fatigue Study of Lead Free 99.3Sn-0.7Cu Solder Alloy[J]. International Journal of Fatigue, 2004, 26: 865-872
    [93] F. Wang, X. Ma, and Y. Qian. Improvement of Microstructure and Interface Structure of Eutectic Sn-0.7Cu Solder with Small Amount of Zn Addition[J]. Scripta Materialia, 2005, 53: 699-702
    [94] H. Nishikawa, J.Y. Piao, and T. takemoto. Interfacial Reaction between Sn-0.7Cu(-Ni) Solder and Cu Substrate[J]. Journal of Electronic Materials, 2006, 35(5): 1127-1132
    [95] F. Zhu, H. Zhang, and R. Guan. Investigation of Microstructures and Tensile Properties of a Sn-Cu Lead-Free Solder Alloy[J]. J Mater. Sci.: Mater. Electron., 2006, 17: 379-384
    [96] Y. Yan, J. Liu, Y. Shi, et al. Effect of Silver Particles on Wettability and Creep Rupture Life of Sn-Cu Based Composite Solders[J]. Journal of Advanced Materials,Special Edition No.2, January 2007, pp: 9-14
    [97] M. Abtew, and G. Selvaduray. Lead Free Solders in Microelectronics[J]. Mater. Sci. Eng. R, 2000, 27: 95-141
    [98] T. Young. An Essay on the Cohesion of Fluids[J]. Philos. Trans. R. Soc. London, 1805, 95: 65-87
    [99] A. Sharif, and Y.C. Chan. Dissolution Kinetics of BGA Sn-Pb and Sn-Ag Solders with Cu Substrates during Reflow[J]. Mater. Sci. Eng. B, 2004, 106(2): 126-131
    [100] D. Gupta, K. Vieregge, and W. Gust. Interface Diffusion in Eutectic Pb-Sn Solder[J]. Acta Materialia, 1998, 47(1): 5-12
    [101] H.K. Kim, H.K. Liou, and K.N. Tu. Three-Dimensional Morphology of a Very Rough Interface Formed in the Soldering Reaction between Eutectic SnPb and Cu[J]. Applied Physics Letters, 1995, 66(18): 2337-2339
    [102] K.N. Tu, and K. Zeng. Tin-Lead (SnPb) Solder Reaction in Flip Chip Technology[J]. Mater. Sci. Eng. R, 2001, 34(1): 1-58
    [103] J.F. Li, S.H. Mannan, M.P. Clode, et al. Interfacial Reactions between Molten Sn-Bi-X Solders and Cu Substrates for Liquid Solder Interconnects[J]. Acta Materialia, 2006, 54: 2907-2922
    [104] C.K. Alex, and Y.C. Chan. Aging Studies of Cu-Sn Intermetallic Compounds in Annealed Surface Mount Solder Joints[J]. 1996 Electronic Components and Technology Conference, 1996:1164-1171
    [105] K.H. Prakash, and T. Sritharan. Interface Reaction between Copper and Molten Tin-Lead Solders[J]. Acta mater., 2001, 49: 2481-2489
    [106]余谨,祖方遒,丁厚福等.连续变温金属固-液电阻率测试装置及应用[J].稀有金属,2004,28(5): 880-884
    [107]邓键.钎焊[M].北京:机械工业出版社,1979
    [108] B.L. Chen, and G.Y. Li. An Investigation of Effects of Sb on the Intermetallic Formation in Sn-3.5Ag-0.7Cu Solder Joints[J]. IEEE Transactions on Components and Packaging Technologies, 2005, 28(3): 534-541
    [109] K. Suganuma. Advances in Lead-Free Electronics Soldering[J]. Curr. Opin. Solid. St. M. 2001, 5: 55-64
    [110] S.K. Kang, and A.K. Sarkhel. Lead (Pb)-free Solders for Electronic packaging [J]. J. Electron. Mater., 1994, 23: 701-707
    [111]郭福.无铅焊接技术应用[M].北京:科学出版社,2005
    [112] H.Y. Chang, S.W. Chen, D.S.H. Wong, et al. Determination of Reactive Wetting Properties of Sn, Sn-Cu, Sn-Ag, and Sn-Pb Alloys Using a Wetting BalanceTechnique[J]. J. Mater. Res., 2003, 18: 1420-1428
    [113] U.R. Kattner. Phase Diagrams for Lead-Free Solder Alloys[J]. Jom., 2002, 54: 45-51
    [114]李建新.新型Sn-Cu系无银无铅焊料的研究[D].江苏大学硕士学位论文,2009
    [115]赵宁,潘学民,马海涛等.Sn-Cu钎料液态结构的研究[J].金属学报,2008,44(4):467-472
    [116] T.E. Faber. An Introduction to the Theory of Liquid Metals[J]. Cambrdge University, Cambridge, London, 1972
    [117] T. Itami, S. Munejiri, T. Masaki, et al. Structure of Liquid Sn over a Wide Temperature Range from Neutron Scattering Experiments and First-Principles Molecular Dynamics Simulation: a Comparison to Liquid Pb[J]. Phys. Rev. B, 2003, 67: 064201
    [118] P.S. Popel, O.A. Chikova, and V.M. Matveev. Metastable Colloidal States of Liquid Metallic Solutions[J]. High Temp. Mater. Proc., 1995, 14: 219-233
    [119] T. Nishimura. Lead-Free Solder Alloy[P]. US Patent: US6180055, 2001
    [120]赵宁,王建辉,潘学民等.Cu含量对Sn基无铅钎料组织、界面反应影响[J].大连理工大学学报,2008,48(5):661-667
    [121] J. Shen, Y. Liu, and H. Gao. Rapid Directional Solidification in Sn-Cu Lead-Free Solder[J]. J. Univ. Sci. Technol. Beijing, 2006, 13: 333-337
    [122] I. Anderson. Sn-Ag-Cu: A Lead-free Solder for Board Applications[J]. Proceedings of the nepcon west’96. Anahcim, CA, USA. Reed exhibition, Norwalk, CT,USA. 1996, 2: 882-887
    [123] C.M. Miller, I.E. Andxerson, and J.F. Smith. A viable SnPb solder substitute: Sn-Ag-Cu[J]. J. Electr. Mater., 1994, 23(7): 595-601
    [124] C.M. Wu, M. Huang, etal. Microstructural Evolution of Lead-Free Sn-Bi-Ag-Cu SMT Joints During Aging[J]. IEEE Transactions on Advanced Packaging, 2005, 28(1):128-133
    [125] T. Laurila, V. Vuorinen, and J. K. Kivilahti. Interfacial Reactions between Lead-Free Solders and Common Base Materials[J]. Mater. Sci. Eng. R, 2005, 49: 1-60
    [126]苑旺.Sn基无铅钎料/Cu界面反应行为研究[D].哈尔滨工业大学硕士学位论文,2003
    [127]宣大荣.无铅焊接?微焊接技术分析工艺设计[M].北京:电子工业出版社,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700