用户名: 密码: 验证码:
镁及镁合金高效热还原制备新方法的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真空热还原制备技术具有生产工艺较简单、产品纯度高等优点,在有色金属冶金领域占有非常重要的位置。是冶炼和提纯镁、钙、锶、钡、锂、钠、钾等金属的常用方法。
     本论文针对现有的还原制备镁及镁合金技术总存在的还原时间长、温度高、资源能源利用率低、还原罐损耗大等问题,通过还原过程热力学及动力学分析及实验研究,探寻了影响还原反应速度和还原率的主要因素及其改良途径,提出了几种镁及镁合金高效热还原制备新方法。
     论文主要工作及结果包括:
     1.对真空热还原制备镁及镁合金的动力学分析表明,改善还原反应过程中的热量传输及质量传输过程是实现还原反应的快速、充分进行的关键,是发展热还原制镁及镁合金新方法的途径之一。
     2.在系统压强为100Pa、温度为1200℃时能实现Mg、Sr合金的同步还原与冷凝,证实了热还原法直接制备镁合金的理论可行性及实践可操作性。
     3.提出了微粉热还原镁及镁合金新方法。该方法通过细化反应物料至微纳米级,使反应物料产生明显的表面效应、微尺度效应,并提高催化剂性能,从而显著提高热量传输和质量传输效率,实现还原反应的快速充分进行。在解决物料微粉化磨制的技术性与经济性等问题后,可望实现对常规热还原制镁及镁合金技术的改良。
     4.提出了球磨/搅拌热还原制备镁及镁合金新方法。该方法通过在还原反应过程中球磨或(和)搅拌反应体系,从而大幅削弱渣相对反应物间的隔离作用,增加反应物料之间的接触几率,进而大幅提高热量传输、质量传输效率,实现还原反应的快速充分进行。在解决反应罐的密封等装备问题后,该方法可望发展成为一种能源、资源利用率高,综合技术经济效益好的热还原制镁及镁合金新方法。
     5.提出了固—液热还原制备镁及镁合金新方法。该方法通过采用液态还原剂,实现热还原反应环境由固—固态转变为固—液态,大幅度改善热量传输、质量传输条件。在解决还原罐内固液均匀混合实现方式等问题后,该方法可望发展成为一种能源、资源利用率高,综合技术经济效益好的热还原制镁及镁合金新方法。
With such advantages as simple production engineering, high purity production, vacuum-thermal reduction technology takes a important position in non-ferrous metallurgy field. It is a common method used in smelting and refining such metals as magnesium, calcium, strontium, barium, lithium, sodium, potassium.
     This paper aimed at such problems as long reduction time, high temperature, low utilization rate of resources and energy, high loss of reduction tank at the reduction preparation of magnesium and magnesium alloy technology, through the reduction process thermodynamics and kinetics analysis also experimental study, exploring the main parameters effect on reaction speed , reduction rate and it’s improvement measures, proposed several new method of reduction preparation of magnesium and magnesium alloy.
     The main work and findings in this dissertation include:
     1. The dynamic analysis of the vacuum thermal reduction preparation of magnesium and magnesium alloys indicates that the process improvement of heat transfer and quality transfer during the reduction is the key to achieve rapid and fully reduction. It is also a method to develop new ways of thermal reduction preparation of magnesium and magnesium alloys.
     2. With the system pressure of 100Pa and temperature of 1200℃, Mg alloy and Sr alloy can be reduced and condensate simultaneously. Theoretical possibility and practice operability of thermal reduction preparation magnesium alloy are proved.
     3. A new method of macro-powder thermal reduction preparation of magnesium and magnesium alloys is proposed. In this method, reaction materials that were refined to micro-nano show significant surface effect and microscope effect, the catalyst performance was improved, lead to significantly development of the efficiency of heat transfer and mass transfer, achieve the rapid and fully reduction reaction. After solving the technical and economic problems of micronized milling of materials, this method is expected to improve the conventional thermal reduction preparation of magnesium and magnesium alloy technology.
     4. A new method of milling/stirring thermal reduction preparation of magnesium and magnesium alloys is proposed. In this method, the reaction system was milled or (and) the stirred during the reduction process, thus significantly weaken the separation between the reactants caused by residue and increase the probability of contact between reactants, and substantially increased the efficiency of heat transmission and quality transmission, achieved rapid and fully reduction. After solving such equip problem as the sealing of reaction tank, this method is expected to develop into a energy and resource- economic, Comprehensive technical economic efficiency new method for thermal reduction preparation of magnesium and magnesium alloys.
     5. A new method of solid - liquid thermal reduction preparation of magnesium and magnesium alloy is proposed. With the use of liquid reducing agent, the thermal reduction reaction environment change from solid - solid into solid - liquid, lead to significant improvement of heat and quality transfer. After the realization of mixing solid and liquid material uniformly in the reduction tank, this method is expected to develop into an energy and resource-efficient, comprehensive technical economic efficiency new method for thermal reduction preparation of magnesium and magnesium alloys.
引文
[1]徐日瑶主编.硅热法炼镁生产工艺学[M].中南大学出版社. 2002.4.
    [2]徐日瑶主编.硅热法炼镁理论与实践[M].长沙:中南工业大学出版社. 1996.
    [3]王祝堂.澳大利亚一未来的世界镁基地[J].世界有色金属.2000 (11): 22-23.
    [4]张高会,张平则,潘俊德.镁及镁合金的研究现状与进展[J].世界科技研究与发展, 2003, 2: 72-78.
    [5]刘正,王越等.镁基轻质材料的研究与应用[J].材料研究学报, 2000, 14(5): 450-451.
    [6] Panlm. Brulower. Automotive Die Casting Magnesium Reviewing for the 21st Century[J]. Die Casting Engineer, 1997, 41(3): 68-70.
    [7]姜银方,徐金成等.镁合金压铸技术的几个主要问题及其应用前景[J].铸造技术及其装备, 2004, 25(1): 7.
    [8]王渠东,丁文江.镁合金及其成形技术的国内外动态与发展[J].世界科技研究与发展, 2004,26(3): 39-46.
    [9]郭以俊.略论皮江法炼镁工艺的改革[J].轻金属, 1988(6):38-40.
    [10]陈刚,范培耕,彭晓东,曹鹏军,蔡苇.轻合金加工技术[J], 2008, 36[8]15-18
    [11]王晖,张德海.真空技术在皮江法炼镁中应用初探[J].真空, 1994, (6): 44-49.
    [12]李德臣等,炼镁立式还原炉法[J].铸造设备研究, 2007.8(4):37~38.
    [13] Mercedes Ramírez, Rodolfo Haber, Víctor Pe?a ,and Iván Rodríguez. Fuzzy control of a multiple hearth furnace. Computers in Industry Volume 54,Issue 1,May 2004,Pages105-113.
    [14] C. Moreno Molina, A. Flores Valdés, R. Mu?iz Valdez, J. Torres Torres, N. Rodríguez Rosales, and R. Guevara Estrada Modification of Al–Si alloys by metallothermic reduction using submerged SrO powders injection. Materials Letters. Volume 63, Issues 9-10, 15 April 2009, Pages 815-818.
    [15]戴永年,杨斌编著.有色金属材料的真空冶金[M].北京.冶金工业出版社. 2000.
    [16]李志华.氧化镁真空炭热还原实验研究[D].昆明理工大学硕士学位论文,2002.
    [17]杨重愚主编.轻金属冶金学[M].北京:冶金工业出版社.1991.
    [18]陈丽霓主编.轻金属冶炼与环境保护[M].沈阳:东北大学出版社.1991.
    [19] Parvez M A. Experimental study of the ternary magnesium aluminiumst rontium system[J ] . Alloys and Compounds ,2005 ,402 :170 - 185.
    [20] Juarez-Islas J A. Rapid solidification of Mg-Al-Zn-Si alloys[J]. Materials Science & Engineering, 1991, 134: 1193-1196.
    [21] Pekguleryuz M O, Baril E. Development of creep resistant Mg-Al-Sr alloys. John Hryn.Magnesium technology 2001. New Orleans, Louisiana, U. S. A: Metals and Materials Society 2001: 119-125.
    [22] Pekguleryuz M, Labelle P, Argo D, etc. Magnesium diecasting alloy AJ62x with superior creep resistance, ductility and diecastability [C]// John Hryn. Magnesium technology. San Diego, CA, United States: Minerals, Metals and Materials Society, 2003: 201-206.
    [23]徐宋兵,彭晓东,谢卫东. Mg-Sr中间合金制备及锶收得率影响因素分析[J].材料导报, 2006, 11: 150-152.
    [24]杨宝刚,高炳亮,杨振海,邱竹贤.制取铝锶合金在我国的研究进展[J].轻金属, 1999, (1): 33-35
    [25] Wei-dong XIE. Preparation of Mg-Sr Alloys Using Vacuum Reduction– a Thermodynamics Approach[J]. Materials Science Forum, Vols. 546-549 (2007) pp. 463-466.
    [26]董镛.硅热法炼镁——真空应用的广阔天地[J].真空, 1996.2, (1): 50-51.
    [27]阎俊德.真空半连续硅热法炼镁的试验研究[J].轻金属, 1988, (9): 33-36.
    [28]李金文.硅热法炼镁中锻烧白云石的活性度[J]轻金属, 1990(7):38.
    [29]彭建平,冯乃祥.碳化钙真空还原镁热力学分析及试验[J].真空,2009,46(3):16.
    [30]叶大伦,胡建华.实用无机物热力学数据手册(第2版)[M].北京:冶金工业出版社. 2002.
    [31]李秋菊.微/纳米级铁矿粉气相还原动力学研究[D].上海:上海大学,2008.
    [32]李蕾.真空硅热还原制备Mg-Sr合金热力学及工艺研究[D].重庆,重庆大学,2009.
    [33]徐小柯.真空热还原制备Mg-Sr系列合金[D].重庆,重庆大学,2008.
    [34]李凤生等编著.微纳米粉体制备与改性设备[M].北京:国防工业出版社.2004.
    [35]郑水林主编.超微粉体加工技术与应用[M].北京:化学工业出版社.2004.
    [36]吴越著.催化化学(下册)[M].北京:科学出版社.1998.
    [37]段希祥编著.选择性磨矿及其应用[M].北京:冶金工业出版社.1991.
    [38]段希祥编著.球磨机介质工作理论与实践[M].北京:冶金工业出版社.1999.
    [39] J.N.哈特莱等.美国工业导报(采矿专刊).1979.
    [40]山口梅太郎等.岩石力学基础[M].北京:冶金工业出版社.1982:123.
    [41]高磊等编.矿山岩体力学[M].北京:冶金工业出版社.1979:47.
    [42]山口梅太郎等.岩石力学基础[M].北京:冶金工业出版社.1983:3.
    [43]李启衡编著.粉碎理论概要[M].北京:冶金工业出版社.1993.
    [44]赵克中,徐成海.磁力驱动真空动密封技术的发展和应用[J] .真空,2003,(1):21-22.
    [45]丁绪怀,周理编著.液体搅拌[M].北京:化学工业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700