用户名: 密码: 验证码:
糖皮质激素对大鼠激素性坏死股骨头内主要成骨调控基因表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的通过糖皮质激素诱导Wistar大鼠股骨头坏死模型,研究调节成骨细胞分化和成熟关键基因Runx2(runt-related transcription factor-2)、Osterix及AJ18在不同时期激素性坏死股骨头组织中的表达及蛋白质合成的变化情况,分析其在股骨头坏死发病、进展过程中的作用,为研究激素性股骨头坏死的发病机制提供新的理论基础和实验依据。
     方法按20mg/kg剂量交替经大鼠双侧臀大肌注射地塞米松,每周一次;注射地塞米松后放在实验动物跑台上每周两次训练,共8周,诱导大鼠激素性股骨头坏死动物模型。HE染色光学显微镜观察骨组织、骨髓组织、骨小梁结构变化,分析每高倍视野单位面积下空骨陷窝率、单位视野面积内骨小梁面积比、脂肪细胞直径,确定造模成功。按时段提取大鼠股骨头内总RNA及总蛋白,采用实时荧光定量PCR方法从mRNA表达水平检测激素性坏死股骨头组织中Runx2、Osterix、AJ18及骨钙素的表达情况,并用Western blot方法检测各标本Runx2、Osterix、AJ18及骨钙素蛋白表达,分析糖皮质激素对其表达的影响及其在激素性股骨头坏死发病、进展过程中的作用。
     结果实验第8周取股骨头标本行病理学检查,每高倍视野单位面积下空骨陷窝率(12.36%)、单位视野内骨小梁面积(56.54%)、脂肪细胞最大直径(24.52μm)均与正常组差异有统计学意义(p<0.5),造模成功。实验8、10、12周时,实验组大鼠股骨头内Runx2、Osterix及OC的基因表达、蛋白合成较对照组减少,mRNA的表达量分别为正常组的0.9621、0.3259、0.0512,0.9661、0.2026、0.0194和0.2857、0.2027、0.1583,随时间推移三者的基因表达、蛋白合成呈下降趋势。实验组大鼠股骨头内AJ18的基因表达、蛋白合成较对照组增多,AJ18 mRNA的表达在实验后8、10、12周分别为正常组的3.5487、3.6303、3.7576。
     结论激素性股骨头坏死组织中Runx2/Osterix、OC在mRNA和蛋白表达水平均低于正常股骨头组织,AJ18高于正常股骨头组织,糖皮质激素可能通过下调Runx2/Osterix mRNA和上调AJ18 mRNA来抑制成骨细胞活性,抑制骨形成和骨修复,促进骨吸收,导致激素性骨质疏松和股骨头坏死;或者先造成骨质疏松后,骨强度下降,应力作用下骨小梁微骨折引起骨小梁超微结构的改变,继而出现骨修复和应力作用下骨改建,随时间推延,此病理过程反复发生,最终导致股骨头坏死。
Objective By glucocorticoid-induced femoral head necrosis of Wistar rats to study the regulation of osteoblast differentiation and maturation of key genes Runx2 (runt-related transcription factor-2), Osterix, and AJ18 at different times of hormonal necrosis of femoral head and the expression changes in protein synthesis, analysis the role in the femoral head necrosis during the disease progression, provide new theoretical basis and experimental evidence for the femoral head necrosis in the pathogenesis.
     Methods Early rat model of femoral head necrosis was made with alternate injection of dexamethasone(20mg/kg) bilateral gluteus maximus once a week and twice-weekly training on laboratory animal treadmill after 8 weeks. HE staining to determine the success of osteonecrosis, the model is divided into 8 weeks,10 weeks and12 weeks groups,each group 10 animals.According to period, extract total RNA and total protein from the femoral head for real-time quantitative polymerase chain reaction(PCR), and Western blot were performed to detect the dynamic changes of the Runx2,Osterix,AJ18,OC genes expressions and proteins synthesis inside the femoral head of steroid-induced osteonecrosis in rats. Analyze the role of glucocorticoid on regulation of osteoblast maturate gene.
     Results Femoral head specimens make pathological examination afer 8 weeks, under the unit area per high power field empty lacunae rate (12.36%), flat field of view of trabecular bone area (56.54%), fat cell diameter (24.52μm) were statistical diference compared with the normal group. At the post-modeling 8th,10th and 12th week, the expression of the Runx2,Osterix and OC genes, proteins synthesis in model group than the control group to reduce obviously, and the volume of mRNA expression were respectively equivalent to 0.9621,0.3259,0.0512 and 0.9661,0.2026,0.0194 and 0.2857、0.2027、0.1583 times of those in control group. Three expression had a downward trend with the longer time. The expression of the AJ18 mRNA, protein synthesis in model group at the post-modeling 8th,10th and 12th week extremely higher than those in control group, which the volume of mRNA expression were 3.5487,3.6303,3.7576 times of those in control group.
     Conclusion Early steroid-induced femoral head necrosis in rats, by down-regulation Runx2/Osterix mRNA and up-regulation AJ18 mRNA, glucocorticoids may inhibit osteoblast activity, promote bone resorption, leading to osteoporosis and femoral head necrosis.
引文
[1]Matsui M, Ohzono K, Nakamura N, et al. Osteonecrosis of the femora 1 head of laboratory animals:The lessons learned from a comparative st udy of osteonecrosis in man and experimental animals[J]. Vel Pathol,20 03,40(4):345-354.
    [2]Khosla S, Lufkin EQ Hodgson SF, et al. Epidemiology and clinical features of osteoporosis in young individuals[J]. Bone,1994,15(5):551-555.
    [3]Fu BH, Wu ZZ, Dong C. Integrin betal mediates hepatocellular carcinoma cells chemotaxis to laminin[J]. Hepatobiliary Pancreat Dis Int,2004,3(4): 548-551.
    [4]Y. Ishida, JN. Heersche. Glucocorticoid-induced osteoporosis:both in vivo and in vitro concentrations of glucocorticoids higher than physiological levels attenuate osteoblast differentiation[J]. Bone Miner Res,1998,13:1822-1828.
    [5]Yoshikazu Mikami, Kazuki Omoteyama, Shigeyuki Kato, et al. Inductive effects of dexamethasone on the mineralization and the osteoblastic gene expressions in mature osteoblast-like ROS 17/2.8 cells[J]. Biochemical and Biophysical Research Communications,2007,362:368-373.
    [6]Hidekazu Oshina, Shinichi Sotome, Toshitaka Yoshii, et al. Effects of continuous dexamethasone treatment on differentiation capabilities of bone marrow-derived mesenchymal cells[J]. Bone,2007,41:575-583.
    [7]Maeda H, Nakano T, Tomokiyo A, et al. Mineral trioxide aggregate induces bone morphogenetic protein-2 expression and calcification in human periodontal ligament cells[J]. J Endod,2010,36(4):647-652.
    [8]Richards RN. Short-term corticosteroids and avascular necrosis:medical and legal realities[J]. Cutis,2007,80:343-351.
    [9]Kabata T, Kubo T, Matsumoto T. Onset of steroid-induced osteonecrosis in rabbits and its relationship to hyperlipaemia and increased free fatty acids[J]. Rheumatology(Oxford),2005,44(10):1233-1237.
    [10]Matsui M, Saito S, Ohzono K, et al. Experimental steroid induced osteonecrosis in adult rabbits with hypersitivity vasculitis[J]. Clin Orthop Relat Res,1992, (277):61-72.
    [11]Barrueco JL,Gazquez A, Redondo E, et al. A histopathological and morphometrical study of femur head cartilage in Wistar rats treated with prednisolone[J]. Histol Histopathol,1989,4(3):317-323.
    [12]李雄,袁浩,贝美莲等.大剂量激素冲击应用与长期应用对股骨头坏死影响的动物实验[J].骨与关节损伤杂志,1999,14(4):241-244.
    [13]Daniel M, Herman S, Dolinar D, et al. Contact stress in hips with osteonecrosis of the femoral head[J]. Clin Orthop,2006, (447):92-101.
    [14]Matsui M, Ohzono K, Nakamura N, et al. Osteonecrosis of the femor al head of laboratory animals:The lessons learned from a comparative st udy of osteonecrosis in man and experimental animals[J]. Vel Pathol,20 03,40(4):345-354.
    [15]Matsui MD, Satio MD, Ohzono MD, et al. Experimental steroid induced osteonecrosis in adult rabbits with hypersitivity vasculitis[J]. Clin Orthop, 1992,277:61-68.
    [16]薛元锁,时述山.激素性股骨头坏死的早期病理生理改变及治疗[J].中国矫形外科杂志,2000,2(7):187-189.
    [17]Yang X, Karsenty G. Transcription factors in bone:developmental and pathological aspects[J]. Trends Mol Med,2002,8(7):340-345.
    [18]Wang GJ, Dughman SS, Reger SI, et al. The effect of core decompression on femoral head blood flow in steroid-induced avascular necrosis of the femoral head[J]. J Bone Joint Surg Am,1985,67(1):121-124.
    [19]Ficat RP, Arlet J. Ischemia and necrosis of bone[J]. Baltimone:Wiliams Wilkins,1980:131-161.
    [20]Arlet J. Nontraumatic avascular necrosis of the femoral head past present and future[J]. Clin Orthop Relat Res,1992, (277):12-21.
    [21]B. Kern, J. Shen, M. Starbuck, et al. Cbfal contributes to the osteoblast-specific expression of type I collagen genes[J]. Biol. Chem,2001, 276:7101-7107.
    [22]Lin W, Toyosawa S, Furuichi T, et al. Over expression of Cbfal in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures[J]. Cell Biol,2001,155(1):157-166.
    [23]Nakashima K, Zhou X, Kunkel G, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation[J]. Cell,2002,108(1):17-29.
    [24]P. Ducy, R. Zhang, V. Geoffroy, et al. Osf2/Cbfa1:a transcriptional activator of osteoblast differentiation[J]. Cell,1997,89:747-754.
    [25]Otto F, Thornell AP, Crompton T, et al. Cbfal, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development[J]. Cell,1997,89(5):765-771.
    [26]Mundlos S, Otto F, Mundlos C, et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia[J]. Cell,1997,89(5):773-781.
    [27]Yun-Feng W, Matsuo N, Sumiyoshi H, et al. Sp7/Osterix up-regulates the mouse pro-alpha3(V) collagen gene (Col5a3) during the osteoblast d ifferentiation[J]. Biochem Biophys Res Commun,2010,394(3):503-508.
    [28]Nakashima K, de Crombrugghe B. Transcriptional mechanisms in osteoblast differentiation and bone formation[J]. Trends Genet,2003,19(8):458-466.
    [29]Maria Teresa Valenti, Luca Dalle Carbonare, Luca Donatelli, et al. Gene expression analysis in osteoblastic differentiation from peripheral blood mesenchymal stem cells[J]. Bone,2008,7:252-261.
    [30]Crao Y, Jheon A, Nourkeyhani H, et at. Molecular cloning, structure, expression and chromosomal localization of the human Osterix (SP7) gene[J]. Gene,2004,341:101-110.
    [31]Ohyama Y, Nifuji A, Maeda Y, et al. Spacioternporal association and bone morphogenetic protein regulation of sclerostin and osterix expression during embryonic osteogenesis[J]. Endocrinology,2004,145(10):4685-4692.
    [32]Kim HK, Park SJ, Kim JH, et al. Nanoemulsion-eicosapentaenoic acid enhanced alkaline phosphatase, calcium contents, and surface molecules expression during osteogenesis using mouse multipotent bone marrow stromal cells[J]. Nanosci Nanotechnol,2010,10(5):3284-3288.
    [33]Tai G, Polak JM, Bishop AE, et al. Differentiation of osteoblasts from murine embryonic stem cells by overexpression of the transcription factor Osx[J]. Tissue Eng,2004,10(9-10):1456-1466.
    [34]Tu Q, Valverde P, chen J. Osterix enhances proliferation and osteogenic potential of bone marrow stromal cells[J]. Biochem Biophys Res Commun, 2006,341(4):1257-1265.
    [35]Wu L, Wu Y, Lin YF, et al. Ostcogenie differentiation of adipose derived stem cells promoted by overexpression of Osx[J]. Mol Cell Biochem,2007, 301(1-2):83-92.
    [36]Nakashirna K, Zhou X, Kunkel G, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation[J]. Cell,2002,108(1):17-29.
    [37]Kobayashi T, Kronenherg H. Minireview:Transcriptional Regulation in development of Bone[J]. Endocrinology,2005,146(3):1012-1017.
    [38]Lee MH, Javed A, Kim H.J, et al. Transient upregulation of CBFA1 in response to bone morphogenetic protein-2 and transforming growth factor betal in C2C12 myogenic cells coincides with suppression of the myogenic phenotype but is not sufficient for osteoblast differentiation[J]. J Cell Bioehem, 1999,73(1):114-125.
    [39]Nakashirna K, Zhou X, Kunkel Q et al The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation[J]. Cell,2002,108(1):17-29.
    [40]Jheon AH, Ganss B, Cheifetz S, et al. Characterization of a novel KRAB/C2H2 zinc finger transcription factor involved in bone development[J]. J Biol Chem,2001,276(21):18282-18291.
    [41]Jheon A, Chen J, Teo W, et al. Temporal and spatial expression of a novel zinc finger transcription factor, AJ18, in developing murine skeletal tissues[J]. J Histochem Cytochem,2002,50(7):973-982.
    [42]Takahashi T, Kamiya N, Kawabata N, et al. The effect of retinoic acid on a zinc finger transcription factor, AJ18, during differentiation of a rat clonal preosteoblastic cell line ROB-C20 into osteoblasts[J]. Arch Oral Biol,2008, 51(1):87-94.
    [43]Choi JY, Lee BH, Song KB, et al. Expression patterns of bone-related proteins during osteoblastic differentiation in MC3T3-E1 cells[J]. J Cell Biochem,1996,61(4):609-618.
    [1]Miyazaki T, Kanatani N, Rokutanda S, et al. Inhibition of the terminal differentiation of odontoblasts and their transdifferentiation into osteoblasts in Runx2 transgenic mice[J]. Arch Histol Cytol,2008,71(2):131-146.
    [2]Gordon JA, Hunter GK, Goldberg HA. Activation of the mitogen-activated protein kinase pathway by bone sialoprotein regulates osteoblast differentiation[J]. Cells Tissues Organs,2009,189(1-4):138-143.
    [3]Teplyuk NM, Galindo M, Teplyuk VI, et al. Runx2 regulates G protein-coupled signaling pathways to control growth of osteoblast progenitors[J]. J Biol Chem,2008,283(41):27585-27597.
    [4]Hassan MQ, Saini S, Gordon JA, et al. Molecular switches involving homeodomain proteins, HOXA10 and RUNX2 regulate osteoblastogenesis[J]. Cells Tissues Organs,2009,189(1-4):122-125.
    [5]Maruyama Z, Yoshida CA, Furuichi T, et al. Runx2 determines bone maturity and turnover rate in postnatal bone development and is involved in bone loss in estrogen deficiency[J]. Dev Dyn,2007,236(7):1876-1890.
    [6]Kanatani N, Fujita T, Fukuyama R, et al. Cbf beta regulates Runx2 function isoform-dependently in postnatal bone development[J]. Dev Biol,2006,296(1): 48-61.
    [7]Dobreva G, Chahrour M, Dautzenberg M, et al. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation[J]. Cell, 2006,125(5):971-986.
    [8]Zhou G, Zheng Q, Engin F, et al. Dominance of SOX9 function over RUNX2 during skeletogenesis[J]. Proc Natl Acad Sci USA,2006,103(50): 19004-19009.
    [9]Rich JT, Nolta JA, Myckatyn TM, et al. Upregulation of Runx2 and Osterix during in vitro chondrogenesis of human adipose-derived stromal cells[J]. Biochem Biophys Res Commun,2008,372(1):230-235.
    [10]Kim YJ, Kim BG, Lee SJ,et al. The suppressive effect of myeloid Elf-1-like factor (MEF) in osteogenic differentiation[J]. J Cell Physiol,2007,211(1): 253-260.
    [11]Javed A, Bae JS, Afzal F, et al. Structural coupling of Smad and Ru nx2 for execution of the BMP2 osteogenic signal [J]. J Biol Chem,20 08,283(13):8412-8422.
    [12]Jensen ED, Schroeder TM, Bailey J, et al. Histone deacetylase 7 associates with Runx2 and represses its activity during osteoblast maturation in a deacetylation-independent manner[J]. J Bone Miner Res,2008,23(3): 361-372.
    [13]Jones DC, Wein MN, Glimcher LH. Schnurri-3:a key regulator of postnatal skeletal remodeling[J]. Adv Exp Med Biol,2007,602:1-13.
    [14]Luan Y, Yu XP, Xu K, et al. The retinoblastoma protein is an essenti al mediator of osteogenesis that links the p204 protein to the Cbfal tra nscription factor thereby increasing its activity[J]. J Biol Chem,2007,2 82(23):16860-16870.
    [15]Celil AB, Hollinger JO, Campbell PG. et al. Osx transcriptional regulation is mediated by additional pathways to BMP2/Smad signaling[J]. J Cell Biochem,2005,95(3):518-528.
    [16]Valenti MT, Dalle Carbonare L, Donatelli L, et al. Gene expression analysis in osteoblastic differentiation from peripheral blood mesenchymal stem cells[J]. Bone,2008,43(6):1084-1092.
    [17]Ali MM, Yoshizawa T, Ishibashi O, et al. PIASxbeta is a key regulator of osterix transcriptional activity and matrix mineralization in osteoblasts[J]. J Cell Sci,2007,120(pt 15):2565-2573.
    [18]Winslow MM, Pan M, Starbuck M, et al. Calcineurin/NFAT signaling in osteoblasts regulates bone mass[J]. Dev Cell,2006,10(6):771-782.
    [19]Saita Y, Takagi T, Kitahara K, et al. Lack of Schnurri-2 expression a-ssociates with reduced bone remodeling and osteopenia[J]. J Biol Che m,2007,282(17):12907-12915.
    [20]Shohei Matsubayashi, Masahiro Nakashima, Kenji Kumagai, et al. Immunohistochemical analyses of β-catenin and cyclin D1 expression in giant cell tumor of bone (GCTB):A possible role of Wnt pathway in GCTB tumorigenesis[J]. J Pathology-Research and Practice,2009,205(9):626-633.
    [21]Bennett CN, Longo KA, Wright WS, et al. Regulation of osteoblastogenesis and bone mass by Wnt10b[J]. Proc Natl Acad Sci,2005,102(9):3324-3329.
    [22]Kato S, Kawabata N, Suzuki N, et al. Bone morphogenetic protein-2 induces the differentiation of a mesenchymal progenitor cell line, ROB-C26, into mature osteoblasts and adipocytes[J]. Life Sci,2009,84(9-10):302-310.
    [23]Takahashi T, Kamiya N, Kawabata N, et al. The effect of retinoic acid on a zinc finger transcription factor, AJ18, during differentiation of a rat clonal preosteoblastic cell line, ROB-C20, into osteoblasts[J]. Arch Oral Biol,2008, 53(1):87-94.
    [24]Yu VW, Akhouayri O, St-Arnaud R. FIAT is co-expressed with its dimerization target ATF4 in early osteoblasts, but not in osteocytes[J]. Gene Expr Patterns,2009,9(5):335-340.
    [25]Pugliese A, Malakhova ML, Bode AM. A regulatory mechanism for RSK2 NH(2)-terminal kinase activity[J].Cancer Res,2009,69(10):4398-4406.
    [26]Chang J, Wang Z, Tang E, et al. Inhibition of osteoblastic bone formation by nuclear factor-kappaB[J]. Nat Med,2009,15(6):682-689.
    [27]Gaggiotti MC, Del Boca M, Castro G. The immediate-early oncoproteins Fra-1, c-Fos and c-Jun have distinguishable surface behavior and interactions with phospholipids[J]. Biopolymers,2009,91(9):710-718.
    [28]McCarthy TL, Hochberg RB, Labaree,et al. DC3-ketosteroid reductase activity and expression by fetal rat osteoblasts[J]. J Biol Chem,2007, 282(47):34003-34012.
    [29]Hayashi K, Yamaguchi T, Yano S, et al. BMP/Wnt antagonists are upregulated by dexamethasone in osteoblasts and reversed by alendronate and PTH:potential therapeutic targets for glucocorticoid-induced osteoporosis[J]. Biochem Biophys Res Commun,2009,379(2):261-266.
    [30]Kaback LA, Soung do Y, Naik A, et al. Teriparatide (1-34 human PTH) regulation of osterix during fracture repair[J]. J Cell Biochem,2008,105(1): 219-226.
    [31]Almeida M, Han L, Martin-Millan M, et al. Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor-to forkhead box O-mediated transcription[J].J Biol Chem,2007,282(37): 27298-27305.
    [32]Kousteni S, Almeida M, Han L, et al. Induction of osteoblast differentiation by selective activation of kinase-mediated actions of the estrogen receptor[J]. Mol Cell Biol,2007,27(4):1516-1530.
    [33]Mikami Y, Takahashi T, Kato S, et al. Dexamethasone promotes DMP1 mRNA expression by inhibiting negative regulation of Runx2 in multipotential mesenchymal progenitor, ROB-C26. Cell Biol Int,2008,32(2): 239-246.
    [34]Ogawa S, Satake M, Ikuta K. Physical and functional interactions between STAT5 and Runx transcription factors[J]. J Biochem,2008,143(5):695-709.
    [35]Chae YM, Heo SH, Kim JY, et al. Upregulation of smpd3 via BMP2 stimulation and Runx2[J]. BMB Rep,2009,42(2):86-90.
    [36]Rich JT, Rosova I, Nolta JA, et al. Upregulation of Runx2 and Osterix during in vitro chondrogenesis of human adipose-derived stromal cells[J]. Biochem Biophys Res Commun,2008,372(1):230-235.
    [37]Coussens AK, Hughes IP, Wilkinson CR, et al. Identification of genes differentially expressed by prematurely fused human sutures using a novel in vivo-in vitro approach[J]. Differentiation,2008,76(5):531-545.
    [38]Raucci A, Bellosta P, Grassi R, et al. Osteoblast proliferation or differentiation is regulated by relative strengths of opposing signaling pathways[J]. J Cell Physiol,2008,215(2):442-451.
    [39]Reinhold MI, Naski MC. Direct interactions of Runx2 and canonical Wnt signaling induce FGF18[J]. J Biol Chem,2007,282(6):3653-3663.
    [40]Shimoyama A, Wada M, Ikeda F, et al. Ihh/Gli2 signaling promotes osteoblast differentiation by regulating Runx2 expression and function[J]. Mol Biol Cell,2007,18(7):2411-2418.
    [41]Cho SW, Yang JY, Sun HJ, et al. Wnt inhibitory factor (WIF)-1 inhibits osteoblastic differentiation in mouse embryonic mesenchymal cells[J]. Bone, 2009,10:1016-1026.
    [42]Kang S, Bennett CN, Gerin I, et al. Wnt signaling stimulates osteobla stogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gam ma[J]. J Biol Chem,2007,282(19):14515-14524.
    [43]McBride SH, Falls T, Knothe Tate ML. Modulation of stem cell shape and fate B:mechanical modulation of cell shape and gene expression[J]. Tissue Eng Part A,2008,14(9):1573-1580.
    [44]Armstrong VJ, Muzylak M, Sunters A, et al. Wnt/beta-catenin signaling is a component of osteoblastic bone cell early responses to load-bearing and requires estrogen receptor alpha[J]. J Biol Chem,2007,282(28): 20715-20727.
    [45]Yanagisawa M, Suzuki N, Mitsui N, et al. Compressive force stimulates the expression of osteogenesis-related transcription factors in ROS 17/2.8 cells[J]. Arch Oral Biol,2008,53(3):214-219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700