用户名: 密码: 验证码:
地下建筑结构抗震性能分析与抗震简化计算方法探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下空间作为一种资源在能源、交通、通讯、城市建设和国防工程等方面广泛使用。1995年神户地震改变了“地下结构不需要进行抗震设计”的传统观念,在此之后,关于地下结构的抗震研究工作逐渐得到发展。地下建筑结构作为一类特殊的地下结构,其抗震设计具有特殊性,但目前对地下建筑结构抗震研究的关注不够,对地下建筑结构的抗震性能了解不充分,没有用于地下建筑结构抗震设计的计算方法及相应的抗震设计规范。基于这种背景下,提出了本文的研究课题。
     本文从地下建筑结构的特点和震害分析出发,阐述了地下建筑结构作为一种特殊地下结构所具有的不同于地下结构和地面结构的特点;建立了适用于地下建筑结构三维分析的动力有限元模型,并验证了分析模型的可靠性;利用大型非线性有限元分析软件ABAQUS,以三维地下建筑结构为研究对象,对地下建筑结构的抗震性能进行了比较详细的分析。对比了地面结构与地下建筑结构的地震响应差异,研究了土层厚度、围岩类别等对地下建筑结构抗震性能的影响。总结了地下建筑结构地震反应规律,提出了抗震设计建议;并在此基础上,对地下建筑结构的三维有限元分析简化为平面二维有限元模型进行了探讨,对几种常用的简化计算模型与三维有限元模型的计算结果进行了比较,分析了几种简化计算模型存在的不足,基于地下建筑结构纵向端部约束效应,对等效综合框架-剪力墙结构进行了修正。
     本文基于上述研究,得到如下结论:
     ①通常认为地面结构的震害重于地下结构的震害,但对分别位于地面和地下的相同结构而言,地下结构的侧移和内力普遍大于地面结构。这主要是由于地震作用下围岩对结构产生的动土压力引起的。简单地认为地下建筑结构较地面结构安全是不科学的,地下建筑结构也应该注重抗震设计。
     ②结构的埋深对地下建筑结构的地震响应的影响显著。随埋深的增加,地下建筑结构的地震响应出现先增加后减小的变化趋势。在一定深度范围内,随结构埋深的增加,地下建筑结构的层间侧移及结构内力均会显著增加,但当埋深超过一定深度后,结构的层间侧移和内力增加的幅度会减小,甚至出现层间侧移及内力随埋深的增加而减小的情况。说明围岩对地下结构的地震作用受埋深的影响。
     ③围岩性质直接影响着地下建筑结构抗震性能。围岩越软,对地下建筑结构的约束作用越弱,结构的变形越大,对结构越不利。同时,研究表明:在围岩由硬到软的过程中,结构的内力出现先增大后减小的趋势,即并不是围岩越软,结构内力越大,地下建筑结构设计中应注意这点。
     ④当地下建筑结构采用“典型框架+单位厚度围岩”(类似于隧道结构的平面应变模型)简化分析模型时,分析得到的层间位移比三维模型的大许多,且变化趋势也与三维模型的结果不同;结构内力也不能完全包络三维模型的结果,即存在内力算小的情况,可能导致不安全。因此,地下建筑结构如果直接套用地铁隧道等线状地下结构的平面简化模型进行分析是不科学的,也可能不安全。
     ⑤当地下建筑结构采用“考虑剪力墙翼缘典型框架+典型框架负载范围厚度围岩”的简化分析模型时,计算的层间位移极值比三维模型的结果偏大,而且不能完全反应三维模型的层间位移变化趋势;结构内力要比三维模型大许多。因此,地下建筑结构如果采用这种等效框架结构作为平面简化模型进行计算时,结果偏安全,但过于保守,富余量太大,不经济。
     ⑥当地下建筑结构采用“等效综合框架-综合剪力墙+结构纵向范围厚度围岩”的简化分析模型时,层间位移的变化趋势与三维模型的结果相似,且层间位移是三维模型结果的倍数,有明显的规律性;等效综合框架-剪力墙结构内力能够较好的包络三维整体分析的结果,且其值也在能够接受的范围内。特别是考虑了地下建筑结构纵向端部约束作用,对土体刚度采用n = 1 + B /L的放大系数进行修正后,等效综合框架-剪力墙结构的层间位移与内力均能较好拟合三维有限元分析结果。因此,采用等效综合框架-剪力墙结构模拟效果较好。
As a resource, underground space has been utilized widely in energy sources, traffic, communication, city construction, and national defending engineering, etc. The traditional concept that "underground structure does not need to undertake seismic design”was changed by the Kobe earthquake in 1995, and the ant-seismic research of underground structure has been gradually developed. As a special kind of underground structure, the seismic design of underground construction is different from others. At present, the ant-seismic research of the underground construction is not paid adequate attention; the study on the seismic performance of it is not enough. There is no calculational method or relevant code of seismic design which can be used in the ant-seismic design of underground construction. It is just against such a background that the topic studied in this essay is presented.
     Based on the characteristics and earthquake disasters of underground construction, the characteristics of underground construction which are different from that of other underground structure or structure on the earth's surface are presented; A 3-D dynamic finite element model that is applicable to underground construction is established and verified; Taking the 3-D underground construction as research object, the earthquake resistant behavior of underground construction is analyzed in detail by means of the nonlinear FEA software ABAQUS. The differences of seismic responses between the underground construction and ground structure are analyzed; the influence of soil thickness and rock sort on the ant-seismic performance of the underground construction is studied. In the paper, the rule of seismic response of underground construction is summarized and suggestions for ant-seismic design are proposed; based on it, the problem of 3-D finite element analysis simplified into 2-D finite element analysis model is discussed, the calculation results of several simplified calculational model are compared with that of the 3-D finite element model, some shortcomings the simplified calculational model of are expounded. the equivalent master frame-shear wall structure is modified on account of the longitudinal end-restrain of underground construction. Based on the research, conclusions are given as follows:
     ①It is often assumed that earthquake disasters of ground structure is more serious than underground construction. However, for a same structure built on underground and ground, internal forces and peak interstory drift of underground structure is larger than the other. The main cause of it is dynamic soil pressure under earthquake caused by the surrounding rock. So the simple idea of underground structure is safer than ground structure is not appropriate, the design underground structure should pay attention to seismic resistance.
     ②The buried depth for structure has great influence on seismic response of underground construction. With the augment of buried depth, the seismic response of underground construction first increases, than decreases. To a certain range of depth, the seismic response of underground construction increases with the augment of buried depth; however, over certain depth, the influence of buried depth will becomes little, the seismic response even decreases with the augment of buried depth. It can suggest that the buried depth has impact on the earthquake action of underground construction influenced by surrounding rock.
     ③The rock sort directly affects the seismic response of underground construction. The wall rock softer, the weaker the restraint effects to the underground construction, the greater the deformation, the more dangerous the earthquake resistance of underground structures. Furthermore, with the rock changing from hard to soft, the internal force of the structure first increases and then decreases, the design of underground construction should consider that it is not the rock softer, the greater the structure internal force.
     ④When the simplified model of“typical frame structure+ unit thickness sock”is used to simulate underground construction, peak interstory drift derived from the analysis is greater than the 3-Dmodel, and the trend is not same to that of 3-D model; moreover, the internal force of the structure can’t envelope the result of the 3-D model, that is, sometimes internal force will be less than that of the 3-D model, the effects may lead to unsafe situations. So the underground construction model based on simplified plane model of linear underground structure such as metro tunnels is unscientific and unsafe.
     ⑤When the simplified model of“typical frame considering the flange of shear wall + thickness sock in the load range of the frame”is used to simulate underground construction, peak interstory drift derived from the analysis is greater than the 3-D model, and the trend can not absolutely reflect that of the 3-D model; the internal force is greater than that of the 3-D model. So if this model is used, the result is safe, but is also conventional and diseconomy.
     ⑥When the simplified model of“equivalent frame-shear wall+ thickness sock in the longitudinal range of the structure”is used to simulate the underground construction, the trend is similar to that of the 3-D model and the peak interstory drift is times to that of the 3-D model; the internal force of the equivalent frame-shear wall can envelope the result of the 3-D model well and the result is acceptable. Especially when the longitudinal end-restrain is considered, the stiffness of soil is modified by the amplification factor n = 1 + B /L, the interstory drift and internal force of the equivalent frame-shear wall can make better approach of the analysis result of the 3-d model. Therefore, using the equivalent frame-shear wall model can achieve perfect results.
引文
[1].王文卿.城市问题与城市地下空间的开发利用[J].地下空间, 1998, (6): 79~83.
    [2].施仲衡.地下铁道设计与施工[M].西安:陕西科学技术出版社, 1997.
    [3].杨林德,李文艺等.上海市地铁区间隧道和车站的地震灾害防治对策研究[J].同济大学上海防治救灾研究所研究报告, 1999.
    [4]. Kuesel T. R. Earthquake Design Excitation for Subways[J]. Structural Division, 1969, ASCE95(ST6): 1213~1231.
    [5]. Newmark N. M. Problems in wave propagation in soil and rock[J]. Proc. of international symaposium on wave propagation and dynamic properties of earth materials, New Mexico, 1968, 7~26.
    [6]. St. John C.M. and Zaahrah T.F. Aseismic design of underground structures[J]. Tunneling Underground Space Technology, Vo1.22: 165~197.
    [7].吕和林.一种用于浅埋隧道抗震分析的拟静力数值方法[J].西南交通大学学报, 1999, Vol.34 (3): 315~319.
    [8]. Gil L. M., Hernandez E. and Fuente P. Simplified Transverse Seismic Analysis of Buried Structures[J]. Soil Dynamics and Earthquake Engineering, 2001, Vo1.21: 735~740.
    [9]. Penzien J. Seismically Induced Racking of Tunnel Linnings[J]. Earthquake Engineering and Structural dynamics, 2000, 29: 683~691.
    [10]. Huo H. Seismic design and analysis of rectangular underground structures[J]. USA:Purdue University, 2005.
    [11]. Hashash Youssef M.A. et.al Seismic design and analysis of underground structures[J]. Tunneling and Underground Space Tecnology, 2001, 16: 247~293.
    [12].龚晓南.土工计算机分析[J].北京:中国建筑工业出版社, 2000.
    [13]. Yuan H. F. and Walker R. E. The Investigation of a Simple Soil-Structure Interaction Model[J]. Dynamic Waves in Civil Engineering, Wiley Interscience, 1970, 247~266.
    [14]. Gomez-Masso A. and Attalla I. Finite Element vs. Simplified Methods in the Seismic Analysis of Underground Structures[J]. Earthquake Engineering and Structure Dynamics, 1984, 12: 347~367.
    [15]. Rodriguez-Roa F. Numerical Analysis of an Experimental Tunnel[J] Proceedings of 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, Balkema, 1985, 789~792
    [16]. Monsees J. E. and Merritt J. L. Seismic Modeling and Design of Underground Structures[J]Numerical Methods in Geomechanics, Innsburck, 1988, 1833~1842.
    [17].高峰,关宝树.沉管隧道三维地震反应分析[J]兰州铁道学院学报(自然科学版), 2003, Vo1.22 (1): 6~10.
    [18]. Goto Y. and Ota J. On the earthquake response of submerged tunnels[C]. Proceedings of the 5th WCEE, 1973, 579~582.
    [19]. Okamoto S. et al. Behaves of submerged tunnels during the earthquakes[C]. Proceedings of the 5th WCEE, 1973, 544~553.
    [20].徐志英,施善云.土与地下结构动力相互作用的大型振动台试验与计算[J].岩土工程学报, 1993, Vol. 15 (4): 1~7.
    [21].季倩倩.地铁车站结构振动台模型试验研究[D].上海:同济大学, 2001.
    [22]. . Trifunac, M D. Surface motion of a scmi-cylindrical valley for incidelat plane SH waves[J]. Bulletin of the Seismological Society of America, 1971, 61: 1755~1770.
    [23]. Wlong,H L and Trifunac, M D. Surface motion of a semi-elliptical alluvial valley for incident plane SH waves[J]. BSSA, 1974, 64: 1389~1408.
    [24]. Lee, v w. A note on scattering of elastic plane waves by a hemispherical canyon[J]. Soil Dynamics and Earthquake Engineering, 1982, 1:122~129.
    [25]. Todorovska M, Lee V W Surlace. Motion of shallow circular alluvial valleys for incident plane SH waves:analytical solution[J]. Soil Dynamic and Earthquake Engineering, 1991, 4: 192~200.
    [26].袁晓铭,廖振鹏.圆弧形凹陷地形对平面SH波散射问题的级数解答[J].地震工程与工程振动, 1993, 13 (2): 1~11.
    [27].袁晓铭,廖振鹏.圆弧型沉积盆地对平面SH波的散射[J].华南地震, 1995, 15 (2): 1~8.
    [28].梁建文,严林隽.圆弧形层状沉积谷地对入射平面SV波散射解析解[J].地震工程与工程震动, 2001, 24 (2): 235~243.
    [29].梁建文,张郁山.圆弧形层状凹陷地形对平面SH波的散射[J].地震工程与工程震动, 2003, 16 (2): 158~164.
    [30].李方杰.局部不规则场地对Rayleigh波的散射[D].天津:天津大学, 2004.
    [31].李小军,廖振鹏,关慧敏.粘弹性场地地形对地震动影响分析的显式有限元有限差分方法[J].地震学报, 1995, 17 (3): 362~3690.
    [32].杜修力,熊建国等.平面SH波散射问题的边界积分方程分析法[J].中国地震, 1993, 3: 30~40.
    [33].廖振鹏.近场波动的有限元模拟[J].地震工程与工程振动, 1984, 4 (2): 1~14.
    [34].杨柏坡,陈庆彬,袁一凡.地震小区划中复杂场地影响的修正方法[J].地震工程与工程振动, 1991, 11 (4): 19~27.
    [35].李小军,廖振鹏,关慧敏.粘弹性场地地形对地震动影响分析的显式有限元有限差分方法[J].地震学报, 1995, 17 (3): 362~3690.
    [36].朱镜清.论结构动力分析中的数值稳定性[J].力学学报, 1983, 1 (4): 388~394.
    [37].孙焕纯.非线性结构动力分析的改进θ法[J].力学学报, 1981, 2: 31~40.
    [38].程民宪.负屈服刚度条件下数值积分的收敛性和稳定性[J].力学学报, 1988, 2 (1): 31~40.
    [39].杜修力,王进廷.阻尼弹性结构动力计算的显式差分法[J].工程力学, 2000, 17(5): 36~43.
    [40].杨柏坡,陈庆彬.显式中心差分有限单元法在复杂场地地震反应分析中的应用[J].地震研究, 1992, 15 (1): 70~78.
    [41].李小军,廖振鹏,杜修力.有阻尼体系动力问题的一种显示差分解法[J].地震工程与工程振动, 1992, 12 (4): 74~80.
    [42].景立平.波动有限元方程显式逐步积分格式稳定性分析[J].地震工程与工程振动, 2004, 24 (5): 20~26.
    [43].谢康和,周健.岩土工程有限元分析理论与应用[M].北京:科学出版社, 2002.
    [44]. Decks A J, Randolph M F. Axisymmetric time-domain transmitting boundaries[J]. Journal of Engineering Mechanics, 1994, 120 (1): 25~42.
    [45].刘晶波.结构-地基动力相互作用问题分析的一种直接方法[J].土木工程学报, 1998, 31 (3): 55~64.
    [46].廖振鹏,刘晶波.离散网格中的弹性波动[J].地震工程与工程振动, 1986, 6 (2): 1~16.
    [47].赵建锋,杜修力,韩强等.外源波动问题数值模拟的一种实现方式[J].工程力学, 2007,24 (4): 52~58
    [48].刘晶波,杜修力.结构动力学[M].北京:机械工业出版社, 2004.
    [49].陈健云,温瑞智,于品清等.浅埋软土地铁车站地震响应数值分析[J].世界地震工程, 2009 (6): 46~52.
    [50].庄海洋,王修信,陈国兴.软土层埋深变化对地铁车站结构地震反应的影响规律研究[J].岩土工程学报, 2009 (8): 1258~1266.
    [51].薄景山,李秀领,刘红帅.土层结构对地表加速度峰值的影响[J].地震工程与工程振动, 2003, 23 (3): 35~40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700