用户名: 密码: 验证码:
含氟丙烯酸酯树脂的合成及在油水分离材料中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空、汽车工业的发展,人们对飞机、汽车发动机的要求越来越高,而作为发动机的“血液”-燃油和液压油,它们的品质直接影响着发动机的性能。油液含水量是油液品质的一项重要指标,是导致发动机故障的主要原因之一。燃油中水的危害可以归纳为:腐蚀和堵塞空隙。燃油中的水常常析出硫化物使之转变成酸,增加了对发动机喷油系统和发动机本身的腐蚀。水也促使了形成积渣的微生物的滋长,它很容易使有微孔的零部件堵塞例如喷嘴、滤清器等。上述现象即使在水的含量很低的情况下也会发生。因此除去油液中的少量含水显得非常的重要和有意义。本论文制备具有良好疏水和机械性能的含氟丙烯酸酯树脂,并对其进行亲油性的改善,制备了具有油水分离功能的滤网涂层,应用在油液滤清器上取得了较好的油水分离效率。
     论文首先合成了含氟丙烯酸酯树脂,确定了单体的种类、加入量、反应温度、引发剂种类等。采用甲基丙烯酸甲酯MMA、丙烯酸丁酯BA、甲基丙烯酸羟基乙酯HEMA、甲基丙烯酸全氟烷基酯FMA为反应单体,偶氮二异丁腈AIBN为引发剂加入量1.5%(w/w)分两次添加、反应温度85℃、MMA与BA的配比为4:6(w/w),HEMA的加入量为15%(w/w),氟单体FMA采用后期一次性添加的方式加入量为3%制得了具有低粘度,低分子量的共聚物,对树脂的涂装工艺进行了探索,确定了树脂的涂装工艺条件:固化剂中NCO含量与羟基含量比值为1.1:1(摩尔比),树脂固化温度110℃,固化时间2h,以及在不锈钢滤网涂膜时的上胶浓度为3%(w/w)。
     固化后涂膜具有良好的附着力划格法0级,较好的耐溶剂性、耐油性,涂膜在10%(w/w) HCl和10%(w/w) NaOH溶液中浸泡7天后表面无明显变化;涂膜在煤油、液压油中浸泡1个月无明显变化。耐高低温性能良好在-55℃到200℃范围内性质无变化,基本满足树脂在滤清器油水分离环境中需要达到的要求。
     对含氟丙烯酸酯树脂进行亲油改善,通过引入长链烷烃高级丙烯酸酯,讨论了长链烷烃高级丙烯酸酯的烷烃链长,添加方式、与氟单体的配比以及氟单体链长对亲油性效果的影响。确定了最优的亲油改善工艺配方,即以甲基丙烯酸十八烷基酯SMA作为亲油改性单体,氟单体选用甲基丙烯酸全氟烷基酯FMA,两者按照3:7(w/w)的比例,用量占单体总量的15%的条件下,在反应后期一次性加入。改性后的树脂对煤油的亲油性提高较为明显;对液压油亲油性的提高效果不明显。同时,树脂能在提高亲油性的同时进一步提高树脂的疏水效果。
     最后通过油水分离实验,对树脂的油水分离效率进行测试,结果表明分离效率与油液的初始含水量成正比关系;要获得好的分离效率在亲油改善过程中一定要保证树脂好的疏水效果。通过与成熟的商品样进行比较,得出自制的亲油改善的含氟丙烯酸酯树脂具有较好的油水分离效率,与商品样的分离效率较为接近。
With the development of aviation and automobile industry, people’s demand for the engines of car and aircraft have become increasingly high, and as the "blood" of engine - oil and hydraulic oil plays an important role in the efficiency of engine.the risk of water in the oil can be summarized: corrosion and block holes .The water in oil offen make the precipitate becoming into acid.which will increase the corrosion of the fuel injection system and the engine.and the water promote the growth of microorganisms.which is the resion to produce precipitates. It's worth noting that the above-mentioned phenomenon offen taken place when the water is very less in the oil.so,it is very important to separate water from oil. my paper provided the fluorine-containing acrylic resin with good hydro-oil-phobicity and adhesion, mechanical properties, and then improved the oilphilic of resion and prepared the filter coating with oil and water separation function which applied to the oil filter achieved a better water separation efficiency.
     Firstly synthesized fluorinated acrylic resin and determined the choice of monomer, used MMA BA HEMA and FMA as the monomers. The ratio MMA/BA:4:6(w/w),AIBN as the initiator and the dosage is 1.5%(w/w).and add in two times.rection temperature is 85℃,the dosage of HEMA is 15%(w/w).and the dosage of FMA is 3%(w/w),add in one time at the later period. received copolymer with low viscosity, low molecular weight. explored the coating technique of the resin and determine the conditions of coating procedure: the ratio of curing agent content- NCO and hydroxyl content is 1.1:1(mol/mol), curing temperature:110℃, curing time:2h and the coating concentration when coating on stainless steel filter is 3%(w/w).
     the cured film has good adhesion:0 grade , good solvent resistance :there is no change under the condition of Immersing in 10%(w/w) HCl和10%(w/w) NaOH for 7 days.and it is als o that Immerse in oil and hydraulic oil for 1 month. and good resistance to high and low temperature performance:there is no change at the temperature between -55℃and 300℃. The resion can meet the mechanical properties required which is used in the oil and water separation industries .
     Improve the oilphilic of the fluorinated acrylic resin through the introduction of long-chain alkanes acrylate. discussed the length of long-chain alkanes acrylate, add methods, and the ratio of fluorine monomers and long-chain alkanes acrylate,the length of fluorine monomer chain to the oilphilic .and determined to use SMA and FMA at the ratio of 7:3 (w/w),and the adding volume:15%(w/w).the contact angele with coal oil decreased obviously. and the contact angele with hydraulic oil decrease only a little.
     Finally, through the experiment of oil-water separation, the efficiency of resin oil and water separation been tested , discussed the initial water content in oil .the two different processes on improve oilphilic. Compare our sample with mature product in oil-water separation efficiency. The results showed that the fluorinated acrylic resin which been treated by oilphilic has good water separation efficiency, but there still some distance compare with merchandise .
引文
[1] Yu Li. "Conditioning Water Contaminant in Oil by Coalescence", 2nd IFC,1999. 9
    [2]隋智慧,秦煌民.油水分离技术的研究进展[J].油气田地面工程, 2002.21(6): 115-116
    [3]李廷朝,程素萍.润滑油聚结脱水技术[J].液压与气动, 2003. l: 41-42
    [4]王建忠.液压油过滤脱水的研究[J].黑龙江矿业学院学报, 2000. 10(1): 15-19
    [5]沈钟,王果庭.胶体与表面化学[M].化学工业出版社, 1991. 9
    [6]王枢,褚良银,陈文梅,肖新材,王广金.油水分离膜的研究新进展[J].油田化学, 2003. 20(4): 387-390
    [7]刘军.聚结式油水分离工艺[J].山西建材, 2000年增刊: 7-8
    [8]冯和平,罗万明,孙王民,路晓宇.聚结干燥技术及应用[J].化工自动化及仪表, 2003. 30(6): 69-70
    [9]张敏,袁惠新.聚结分离过程的机理、方法及应用[J].过滤与分离, 2003. 13(1)44-46
    [10]武利民.现代涂料配方设计[M].北京:化学工业出版社, 2000
    [11]杨婷婷,王世敏,徐祖顺等.全氟丙烯酸酯聚合物乳液研究进[J].高分子通报, 2003,12(6):13-16
    [12] Reinhard F Linemann, Thomas E Malner, Ramer Brandsch etal Latex Blends of Fluorinated and Fluorine-Free acrylates Emulsion Polymerization and Tapping Mode Atomic Force Microscopy of Film Formation [J]. Macormolecules, 1999, 32(6)1715-1721
    [13] Msrra, kacgy G, Chapman, Toby M Polym Prep (Am Chem Soc, Div Polym Chem), 1996,37(2) 286-288
    [14] Hayakawa Y, Terasawa N, Synthesis of novel polymethcrylates bearing cyclic perfluoroalkyl groups[J]. Polymer, 1998,39(17) 4151-4154
    [15] DeSimone J M, Guan Z, et al, Homogeneous Free Radical PoLymenzations of Fluorinated monomers in Supercritical Carbon Dioxide[J]. Polymer Preprints (USA) 1992, 33(2) 329-330
    [16]张兆斌等.氟烷基(甲基)丙烯酸酯的原子转移自由基均聚物[J].合成橡胶工业, 1999,22(3) 177
    [17] Liang Yuanyuan , Yang Wenying , Controlled homopolmerization of 2,3,3,3-tetrafluoropropy methlycrylate with Schiff base complexes of cobalt( II )[J].ChinaSynthetic Rubber Industry.2003,26(3)172-174
    [18]周钰明,黄静艳等. N–羟乙基全氟辛酰胺甲基丙烯酸酯聚合物的合成及性能研究[J].精细化工, 2002,8(19): 78-79
    [19] Richard R Thomas, Douglas R Anton, Wilham F Graham et al. Preparation and Surface Properties of acrylic Polymers Containing Fluorinated Monomers[J] Macromoiecules,1997,30 2883-2890
    [20] Liu Bing ,Yuan Caigen, well-defined graft copolymer of styrene and fluorinated acrylate synthesized by living radical polymerization[J]. China Synthetic Rubber Industry,2000,23(6): 377-379
    [21] Pierre Marion, Gerard Bemert, Didier Juhue et al. Core-Shell Latex Particles Containing a Fluorinated Polymer in the Shell-2- Internal Structure Studied by Fluorescence Nonradiative Energy Transfer [J] Macromolecules, 1997, 30(1): 123-129
    [22]赵兴顺,丁小斌.甲基丙烯酸全氟辛基乙酯-甲基丙烯酸丁酯乳液共聚动力学[J].高分子材料科学与工程2004,10(6): 76-78
    [23]沈一丁,李小瑞. N-羟乙基全氟辛酰胺丙烯酸酯共聚物的制备及应用[J].精细化工, 1997,05 : 11-13
    [24]程时远,陈艳军.含氟丙烯酸酯三元共聚物乳液的研究[J].高分子学报, 2002,10(5): 561-564
    [25]李欣欣,房冰.丙烯酸全氟烷基乙基酯嵌段共聚物的组成结构表征[J].高分子学报, 2003,12(6): 910-913
    [26]费晓峰,张季爽.高吸油树脂的研究进展[J].现代化工, 1998 (1):13-15
    [27]方洞浦,朱爱平,任尚坤等.高吸油树脂(综述) [J].周口师专学报, 1995, 12 (2) : 1-7
    [28]朱秀林,徐冬梅,丽雅芳等.高吸油性树脂的合成及性能研究[J].高分子材料科学与工程, 1995, 11 (1)19-23
    [29]蒋必彪,陈小严,朱亮.高吸油性树脂的合成与性能[J].高分子材料科学与工程, 1996, 12 (6):25--28
    [30]黄歧善,黄志明,翁志学等.丙烯酸系高吸油树脂的合成[J].化学反应工程与工艺, 1997, 13 (4) : 401-404
    [31]刘德荣,毛逢银,颜杰.丙烯酸系自膨润型吸油树脂的合成.化工新型材料, 1997, 25(4):37-39
    [32]朱斌,张兵,生辉.快速高吸油树脂的合成及吸油性能研究[J].华南理工大学学报(自然科学版), 1999,27 (12):100-104
    [33]陆晶晶,周美华.吸油材料的发展[J].东华大学学报(自然科学版), 2002, 28(1):126--130
    [34]张高奇,周美华,梁伯润.高吸油树脂的研究与发展趋势[J].化工新型材料, 2002, 30(1):29--31
    [35]胡玉山,张政朴,何炳林.高吸油性树脂[J].离子交换与吸附, 1999, 15 (4) : 378--384
    [36]马俊涛,冉千平,张伟等.高吸油性树脂PASE的合成与性能评价[J].化工新型材料, 2000, 28 (10) : 31-34
    [37]黄岐善,华卫琦,潘祖仁等.丙烯酸系高吸油树脂的合成[J].合成技术及应用, 2000, 15(3):9--12
    [38]路建美,朱秀林.二元共聚高吸油性树脂的合成及研究[J].高分子材料科学与工程, 1995, 11(2) : 41--45
    [39]路建美,朱秀林,鲁新宇等.丙烯酸酯与甲基丙烯酸酯的共聚及性能研究[J].高分子材料科学与工程, 1995, 11(4):48-51
    [40]纪顺俊,戴蔚荃,狄海生等.丙烯酸2-乙基己酯与丙烯酸羟乙酯共聚合成高吸油性树脂的研究[J].高等化学工程学报, 2002, 16(4):446-449
    [41]路建美,戴蔚荃,潘健等.丙烯酸2-乙基己酯与醋酸乙烯酯共聚合成高吸油性树脂的研究[J].高分子材料科学与工程, 2002, 18 (6) : 168-170
    [42]必彪,陈小严,朱亮.高吸油性树脂的合成及其性能研究[J].合成树脂及塑料, 1996, 13(2):37--39
    [43]蒋必彪,陶国良,吴爱民等.聚氯乙烯-g-聚苯乙烯新型吸油树脂的合成与性能[J].塑料工业, 1999, 27(4):1-3
    [44]谢晓虹,李春萍,支文瑞.甲基丙烯酸长链烷基酯的共聚及其吸油性能的研究[J].内蒙古工业大学学报, 2002,21(3): 174-177
    [45]李春萍,杨伟,郝继军等.甲基丙烯酸酯合成高吸油性树脂[J].内蒙古工业大学学报, 2001, 20 (4):267-271
    [46]杨伟,李春萍,郝继军等.高吸油性树脂的合成及其性能研究[J].内蒙古工业大学学报, 2002,21(1):16-20
    [47]黄军左,刘宝生,汤继俊等.高吸油性树脂的合成及性能研究[J].合成树脂与塑料, 1998, 15 (3) : 43--45
    [48]路建美,朱秀林.顾梅.速吸油型高吸油性树脂的研究[J].合成化学, 1995(3):275-278
    [49]路建美,姜琦松,李奕等.微波辐射吸油性复合体的制备及性能研究[J].化学世界, 1999 (2) : 86--89
    [50]尹国强,崔英德,廖列文等.高吸油树脂的网络结构与性能[J].高分子材料-科学与工程, 2003, 19 (6)149--152
    [51]尹国强,崔英德,廖列文等.高吸油树脂的合成、性能与应用[J].广州化工, 2002, 30 (4) : 123--126
    [52]尹国强,崔英德,廖列文等.高吸油树脂的合成与应用[J].化工生产与技术, 2002, 9 (5) : 25-28
    [53]尹国强,崔英德,廖列文等.顺丁烯二酸二丁酯-丙烯酸酯共聚物及其性能[J].精细石油化工, 2002 (3) 35-38
    [54]鲁新宇.路建美.多孔性高吸油性树脂的合成及性能[J].南京化工学院学报, 1995, 17 (2) : 43-47
    [55] JI Shun-jun, LU Jian-mei, ZHU Xiu-lin. Synthesis of modified super oil absorption resin[J]. Synthetic Chemistry, 2001, 9(6):507-510
    [56]张惠,吕宏飞,鲍春阳等.高吸油性树脂的合成[J].化学与粘合, 2001(6):249-251
    [57]张昀,王先友,陈霞.高吸油性树脂的合成方法及性能研究[J].化学研究, 2002, 13(2):45-48
    [58]杜丽栓,王久芬,赵铁虎.丙烯酸酯类吸油树脂的合成[J].化工新型材料, 1998(11):32-34
    [59] Grajeck E J , Petersen W H. Textile Res J , 1962, 32:320.
    [60] M eissneron E, M yszkow sk i J , Szym snow sk i J. Tenside Surf. Det. , 1995, 32 (3) : 261.
    [61] Suwa M, Hashidzume A, Morishima Y, et al. Self-association behavior of hydrophobically modified poly(aspartic acid) in water studied by fluorescence and dynamic light scattering techniques [J].Macromolecules, 2000, 33: 7884-7892.
    [62] Ng W K, Tam K C, Jenkins R D. Rheological properties of methacrylic acid/ethyl acrylate co-polymer:comparison between an unmodified and hydrophobically modified system [J]. Polymer, 2001, 42: 249-259.
    [63] Chen K.-Y., Kuo J.-F. Synthesis and properties of novel fluorinated aliphatic polyurethanes with fluoro chain extenders[J]. Macromol. Chem. Phys., 2000, 201(18):2676-2686
    [64] Tonelli C., Ajroldi G., Marigo A., et al. Synthesis methods of fluorinated polyurethanes. 2. Effects on morphology and microstructure[J]. Polymer, 2001, 42(24):9705-9711
    [65] Bassi M., Tonelli C., Di Meo A. Glass transition behavior of a microphase segregated polyurethane based on PFPE and IPDI. A calorimetric study[J]. Macromolecules, 2003, 36(21):8015-8023
    [66] Tan H., Xie X., Li J., et al. Synthesis and surface mobility of segmented polyurethanes with fluorinated side chains attached to hard blocks[J]. Polymer, 2004, 45(5):1495-1502
    [67] Tongkhundam Y., Sirivat A., Brostow W. Tribological properties of perfluoralkylethyl methacrylate-polymethyl methacrylate copolymer thin films[J]. Polymer, 2004, 45(26):8731-8738
    [68] van de Grampel R.D., Ming W., Gildenpfennig A., et al. The outermost atomic layer of thin films of fluorinated polymethacrylates[J]. Langmuir, 2004, 20(15):6344-6351
    [69] Lazzari M., Scalarone D., Castelvetro V., et al. Novel partially fluorinated copolymers: Evidence of the effect of fluorine on the reactivity of the unfluorinated comonomer units[J]. Macromol. Rapid. Comm., 2005, 26(2):75-81
    [70] Prathab B., Aminabhavi T.M., Parthasarathi R., et al. Molecular modeling and atomistic simulation strategies to determine surface properties of perfluorinated homopolymers and their random copolymers[J]. Polymer, 2006, 47(19):6914-6924
    [71] Hartmann P., Collet A., Viguier M. Acrylic copolymers with perfluoroalkylated biphenyl side groups: Correlation structure-surface properties[J]. Macromolecules, 2006, 39(20):6975-6982
    [72] Suresh K.L., Pakula T., Bartsch E. Synthesis, morphology and rheological behavior of fluoropolymer-polyacrylate nanocomposites[J]. Macromolecular Reaction Engineering, 2007, 1(2):253-263
    [73] Xu S.P., Liu W.Q. Synthesis and surface characterization of an amphiphilic fluorinated copolymer via emulsifier-free emulsion polymerization of RAFT[J]. J. Fluorine Chem., 2008, 129(2):125-130
    [74] Valtola L., Hietala S., Tenhu H., et al. Association behavior and properties of copolymers of perfluorooctyl ethyl methacrylate and eicosanyl methacrylate[J]. Polym. Adv. Technol., 2009, 20(3):225-234
    [75] Thomas R.R., Anton D.R., Graham W.F., et al. Preparation and surface properties of acrylic polymers containing fluorinated monomers[J]. Macromolecules, 1997, 30(10):2883-2890
    [76] Alessandrini G., Aglietto M., Castelvetro V., et al. Comparative evaluation of fluorinatedand unfluorinated acrylic copolymers as water-repellent coating materials for stone[J]. J. Appl. Polym. Sci., 2000, 76(6):962-977
    [77] Saidi S., Guittard F., Guimon C., et al. Low surface energy perfluorooctyalkyl acrylate copolymers for surface modification of PET[J]. Macromol. Chem. Phys., 2005, 206(11):1098-1105
    [78] Bonglovanni R., Di Meo A., Pollicino A., et al. New perfluoropolyether urethane methacrylates as surface modifiers: Effect of molecular weight and end group structure[J]. React. Funct. Polym., 2008, 68(1):189-200
    [79] DeSimone J M, Guan Z, et al, Homogeneous Free Radical Polymerizations of Fluorinated monomers in Supercritical Carbon Dioxide[J]. Polymer Preprints (USA) 1992,33(2)329-330.
    [80]汪长春,包启宇.丙烯酸酯涂料[M].北京:化学工业出版社, 2005
    [81] Yang J.P., Ni H.G., Wang X.F., et al. Creating stable hydrophobic surfaces by poly(butyl methacrylate) end- capped with 2-perfluorooctylethyl methacrylate units[J]. Polym. Bull., 2007, 59(1):105-115
    [82] Ni H.G., Wang X.F., Zhang W., et al. Stable hydrophobic surfaces created by self-assembly of poly(methyl methacrylate) end-capped with 2-perfluorooctylethyl methacrylate units[J]. Surf. Sci., 2007, 601(17):3632-3639
    [83] Wang X.F., Ni H.G., Xue D.W., et al. Solvent effect on the film formation and the stability of the surface properties of poly(methyl methacrylate) end-capped with fluorinated units[J]. J. Colloid Interface Sci., 2008, 321(2):373-383
    [84] Wang X.F., Ni H.G., Xue D.W., et al. Solvent effect on the film formation and the stability of the surface properties of poly(methyl methacrylate) end-capped with fluorinated units[J]. J. Colloid Interface Sci., 2008, 321(2):373-383
    [85] Urushihara Y., Nishino T. Effects of film-forming conditions on surface properties and structures of diblock copolymer with perfluoroalkyl side chains[J]. Langmuir, 2005, 21(6):2614-2618
    [86] Wei H.Y., Li X.X., Wang K., et al. Study on preparation and forming mechanism of super-hydrophobic surface by perfluoroalkyl ethyl acrylate copolymers[J]. Acta Chim. Sinica., 2008, 66(12):1470-1476
    [87] Kim J., Efimenko K., Genzer J., et al. Surface properties of poly[2-(perfluorooctyl)ethyl acrylate] deposited from liquid CO2 high-pressure free meniscus coating[J]. Macromolecules, 2007, 40(3):588-597
    [88] Lee C.Y., Ha J.W., Park I.J., et al. Surface characteristics of water-soluble cationic fluorocopolymers containing perfluoroalkyl, quaternized amino, and hydroxyl groups[J]. J. Appl. Polym. Sci., 2002, 86(14):3702-3707
    [89] Ha J.W., Park I.J., Lee S.B. Hydrophobicity and sliding behavior of liquid droplets on the fluorinated latex films[J]. Macromolecules, 2005, 38(3):736-744
    [90] Nystrom D., Lindqvist J., Ostmark E., et al. Superhydrophobic bio-fibre surfaces via tailored grafting architecture[J]. Chem. Commun., 2006, (34):3594-3596
    [91] Yang J.P., Ni H.G., Wang X.F., et al. Creating stable hydrophobic surfaces by poly(butyl methacrylate) end- capped with 2-perfluorooctylethyl methacrylate units[J]. Polym. Bull., 2007, 59(1):105-115
    [92] Ni H.G., Wang X.F., Zhang W., et al. Stable hydrophobic surfaces created by self-assembly of poly(methyl methacrylate) end-capped with 2-perfluorooctylethyl methacrylate units[J]. Surf. Sci., 2007, 601(17):3632-3639
    [93] Chang K.C., Chen H., Huang C.K., et al. Preparation of super-hydrophobic film with fluorinated-copolymer[J]. J. Appl. Polym. Sci., 2007, 104(3):1646-1653
    [94] Yoshida E., Nagakubo A. Superhydrophobic surfaces of microspheres obtained by self-assembly of poly[2-(perfluorooctyl)ethyl acrylate-ran-2-(dimethylamino)ethyl acrylate] in supercritical carbon dioxide[J]. Colloid Polym. Sci., 2007, 285(11):1293-1297
    [95] Otake A., Miura M., Tsuchiya K., et al. Hydrophobic surface construction by phase-separation of fluorinated block copolymer for immersion lithography[J]. J. Photopolym. Sci. Technol., 2008, 21(5):679-684
    [96] Chen W., Fadeev A.Y., Hsieh M.C., et al. Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples[J]. Langmuir, 1999, 15(10):3395-3399
    [97] Nicolas M., Guittard F., Geribaldi S. Stable superhydrophobic and lipophobic conjugated polymers films[J]. Langmuir, 2006, 22(7):3081-3088
    [98] Nicolas M., Guittard F., Geribaldi S. Synthesis of stable super water- and oil-repellent polythiophene films[J]. Angew. Chem. Int. Edit., 2006, 45(14):2251-2254
    [99] Coulson S.R., Woodward I.S., Badyal J.P.S., et al. Ultralow surface energy plasma polymer films[J]. Chem. Mater., 2000, 12(7):2031-2038
    [100] Coulson S.R., Woodward I.S., Badyal J.P.S., et al. Plasmachemical functionalization of solid surfaces with low surface energy perfluorocarbon chains[J]. Langmuir, 2000, 16(15):6287-6293
    [101] Nishino T., Meguro M., Nakamae K., et al. The lowest surface free energy based on -CF3 alignment[J]. Langmuir, 1999, 15(13):4321-4323
    [102] Wang J., Mao G., Ober C.K., et al. Liquid crystalline, semifluorinated side group block copolymers with stable low energy surfaces synthesis, liquid crystalline structure, and critical surface tension[J]. Macromolecules, 1997, 30:1906-1914
    [103] Tsibouklis J., Graham P., Eaton P.J., et al. Poly(perfluoroalkyl methacrylate) film structures: Surface organization phenomena, surface energy determinations, and force of adhesion measurements[J]. Macromolecules, 2000, 33(22):8460-8465
    [104] Van de Grampel R.D., Van Geldrop J., Laven J., et al. P[CF3(CF2)(5)CH(2)MA-co- MMA] and P[CF3(CF2)(5)CH(2)MA-co-BA] copolymers: Reactivity ratios and surface properties[J]. J. Appl. Polym. Sci., 2001, 79(1):159-165
    [105] Van de Grampel R.D., Ming W., Gildenpfennig A., et al. The outermost atomic layer of thin films of fluorinated polymethacrylates[J]. Langmuir, 2004, 20(15):6344-6351
    [106] Hikita M., Tanaka K., Nakamura T., et al. Aggregation states and surface wettability in films of poly(styrene-block-2-perfluorooctyl ethyl acrylate) diblock copolymers synthesized by atom transfer radical polymerization[J]. Langmuir, 2004, 20(13):5304-5310
    [107] Yarbrough J.C., Rolland J.P., DeSimone J.M., et al. Contact angle analysis, surface dynamics, and biofouling characteristics of cross-linkable, random perfluoropolyether-based graft terpolymers[J]. Macromolecules, 2006, 39(7):2521-2528
    [108] Ping T.X., De P.L., Pei Z.C., et al. Preparation and surface properties of latexes with fluorine enriched in the shell by silicon monomer crosslinking[J]. Eur. Polym. J., 2007, 43(5):2117-2126
    [109]江雷,冯琳.仿生智能纳米界面材料[M].北京:化学工业出版社, 2007
    [110]张正彪,程振平,朱健等.等离子体引发聚合法制备的聚甲基丙烯酸长链烷基酯[J].油田化学, 2003, 20(3):272-276
    [111]杨斌,赵彩霞,邱宇星等. (甲基)丙烯酸高级醇酯的合成及其应用[J].广州化学, 2005, 30(4):53-58
    [112]徐乃库,肖长发,甘秀丽等.甲基丙烯酸十二酯精制及其树脂性能研究[J].离子交换与吸附, 2008, 24(6):481-488
    [113]黄凯兵,李钢,刘春艳等.聚(苯乙烯-甲基丙烯酸烷基酯)高吸油树脂的合成及表征[J].石油化工, 2006, 35(9):841-845
    [114]宋林花,姜翠玉,韩哲茵.丙烯酸高碳醇酯的制备[J].石油化工, 2002, 31(12):991-993
    [115] S. R. Coulson, I. Woodward, J. P. S. Badyal, S. A. Brewer, C. Willis, Super-RepellentComposite Fluoropolymer Surfaces [J].J. Phys. Chem. B 104, 8836 (2000).
    [116] W. Chen et al. Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples [J]. Langmuir1999,15: 3395.
    [117] S. Veeramasuneni, J. Drelich, J. D. Miller, G. Yamauchi, Hydrophobicity of ion-plated PTFE coatings[J].Prog. Org. Coat. 1997, 31, 265.
    [118] T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, Y.Ueda, The Lowest Surface Free Energy Based on ?CF3 Alignment [J].Langmuir1999, 15, 4321.
    [119] Hartmann P., Collet A., Viguier M. Acrylic copolymers with perfluoroalkylated biphenyl side groups: Correlation structure-surface properties[J]. Macromolecules, 2006, 39(20):6975-6982
    [120]杨浩,张杏娟,王希波,黄二梅,皮丕辉,杨卓如含氟丙烯酸酯共聚物涂膜表面润湿性的研究[J].电镀与涂饰, 2010, 29(1):41-45
    [121] Peng S.J., Zhao L., Wu L.M. Surface properties of fluorinated acrylate polymers latex films[J]. Acta Phys-chim. Sin., 2007, 23(4):531-536
    [122] Alessandrini G., Aglietto M., Castelvetro V., et al. Comparative evaluation of fluorinated and unfluorinated acrylic copolymers as water-repellent coating materials for stone[J]. J. Appl. Polym. Sci., 2000, 76(6):962-977
    [123] Morita M., Ogisu H., Kubo M. Surface properties of perfluoroalkylethyl acrylate/n-alkyl acrylate copolymers[J]. J. Appl. Polym. Sci., 1999, 73(9):1741-1749

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700