用户名: 密码: 验证码:
单分散二氧化硅微球及核壳结构材料的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,核壳结构材料的制备成为材料科学中的一个重要研究领域。核壳结构材料,一般由固态的核和围绕其周围包覆完好的壳组成。相对于单一组分的材料来说,核壳结构具有独特的性质从而具有更广泛的应用价值,近年来引起较多的关注。核壳材料的结构、尺寸和大小具有良好的可控性,从而可以方便的调控其磁学、光学、力学、热学、电学、催化等性质。核壳材料可作为制备中空材料的前驱体,还可将昂贵材料包覆在廉价材料上,以降低其成本。近几年,化学组成相同、粒径及表面性质均一的单分散SiO_2微球常被用作模板制备核壳结构的复合微球,但仍存在一些球形度不高、粒度不均一等缺点,目前的改进工作主要集中于制备单分散性较好、球形度较高的、粒度小且均一分布的SiO_2粉体,并利用单分散SiO_2微球组建核壳结构材料。
     本文首先以St(o|¨)ber法为基础,制备单分散SiO_2微球,利用透射电子显微镜(TEM)和粒度分析仪对样品的形貌和粒度进行表征,系统地考察了以氨水为催化剂时,不同反应条件对SiO_2粒径和分散性的影响,并对其反应机制进行了探讨;在此基础上,以制备的单分散SiO_2微球为核,采用溶胶-凝胶法合成了核-壳结构粉体,包括SiO_2@Y_2O_3,SiO_2@YAG:Ce~(3+)等,并对核壳结构粉体的形貌、结构、性质进行表征。研究结果如下:
     (1)利用St(o|¨)ber法,以醇为溶剂,正硅酸乙酯在氨水催化下水解、缩聚,并进行一系列的后处理得到SiO_2微球。研究结果表明,溶剂(醇)的种类不仅影响SiO_2颗粒的分散性,而且随醇碳链增长,SiO_2微球的粒径增大,粒径分布变宽。随着反应液中正硅酸乙酯浓度、水浓度、氨水浓度及体系温度的变化,生成的SiO_2微球的粒径呈规律性的变化。
     (2)利用溶胶-凝胶法,以单分散SiO_2为核合成了SiO_2@Y_2O_3核壳结构粉体。XRD和TEM结果表明,SiO_2表面的Y_2O_3结晶良好,且不与SiO_2核发生反应,随煅烧温度的升高,衍射峰强度增加,但并未产生新的衍射峰,这种核-壳结构的粉体表面致密,厚度均匀,保持了单分散SiO_2微球的形貌特征,壳的厚度可以通过沉积次数进行调控。
     (3)利用溶胶-凝胶法,以单分散SiO_2为核合成了SiO_2@YAG:Ce~(3+)核壳结构粉体。XRD和TEM结果表明,当煅烧温度为800℃时,SiO_2微球表面的YAG:Ce~(3+)结晶完好,非晶SiO_2核不与YAG:Ce~(3+)壳层发生反应,核-壳结构SiO_2@YAG:Ce~(3+)粉体具有完美的球形(粒径约为300 nm),表面光滑不团聚,壳的厚度可以通过沉积次数进行调控。
In recent years, there has been intense interest in the fabrication of core/shell materials in the field of material science. Core-shell materials, often made up of a solid core surrounded by a well-defined shell layer, are known to exhibit unique and advanced properties over single-component nanoparticles, making them attractive for use in a wide range of applications, and are therefore of extensive scientific and technological interest. The structure, size, and composition of these particles can be easily altered in a controllable way to tailor their magnetic, optical, mechanical, thermal, electrical, and catalytic properties. The core-shell particles can be used as a precursor form to produce hollow spheres or to lower the cost of precious materials by coating them on inexpensive cores. Nowadays, the most commonly used to be the nuclear is monodisperse SiO_2, such microspheres have the same chemical composition, particle size and surface properties. The improvements focused on the preparation of monodisperse, particle size is small and homogeneous SiO_2 powder, and used monodisperse SiO_2 microspheres form a class of core-shell powder, which has a potential research value and potential applications.
     In this article, monodispersed silica particles templates were produced by Stober method. The morphology and size of the particles were characterized by transmission electron microscopy (TEM) and particle size analyzer. We had studied the effections of different agents and reaction conditions of ethanol on the SiO_2 particle size and dispersion in the ammonia catalyst, and discussed its mechanism. Secondly, we had synthesised core-shell powder for monodisperse SiO_2 is the nuclear using the sol-gel method, including SiO_2@Y_2O_3, SiO_2@YAG:Ce~(3+), etc., and the core-shell powders were characterized by transmission electron microscopy (TEM) and X-ray powder diffraction. The results are as follows:
     (1) Microspheres SiO_2 were prepared by hydrolysis of tetraethoxy silane (TEOS) in alcohol-water mixed solvents using ammonia as catalyst. The results show that the monodispers of silicon dioxide will be affected by the alcohols, and with the alcohol carbon chain growth, SiO_2 microspheres increased size, size distribution broadens.The particle size of SiO_2 microspheres had changed, with the different of reaction solution, ethyl silicate concentration, water concentration, ammonia concentration and system temperature.
     (2) Core-shell powder SiO_2@Y_2O_3 were synthesised by sol-gel method. XRD and TEM indicated that Y_2O_3 did not reaction with SiO_2 nuclear, The diffraction peak intensity increased with the sintering temperature, but did not produce new diffraction peaks, The core-shell structured phosphor particles were smooth and uniform, maintained the morphology of monodisperse SiO_2. The thickness of the shells could be easily controlled by changing the number of deposition cycles.
     (3) Core-shell powder SiO_2@YAG:Ce~(3+) were synthesised by sol-gel method, XRD and TEM indicated that the YAG:Ce~(3+) did not reaction with the SiO_2 nuclear, and YAG:Ce~(3+)has crystaled in the SiO_2 surface at the sintering temperature 800℃, and the core-shell structured phosphor particles were smooth and uniform, maintained the morphology of monodisperse SiO_2 (about 300 nm). The thickness of the shells could be easily controlled by changing the number of deposition cycles.
引文
[1]刘云旭.新型材料及其应用.武汉:华中理工大学出版社,1990: 131-134
    [2]王金忠,赵岩,张彩培.正交设计在溶胶-凝胶法制备单分散球形SiO2中的研究.中国粉体技术,2003,9(1): 4-8
    [3]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001: 8-24
    [4] J Dutta J, Hofmann H, Houriet R, et al. Crystallization of Nanosized Silicon Powder Prepared by Plasma-induced Clustering Reactions. AIChE Journal. 1997, 43(11): 2610-2615
    [5] Wang H, Zhang X H, Meng X M, et al. Bulk Preparation of Si-SiOx Hierarchical Structures: High-Density Radially Oriented Amorphous Silica Nanowires on a Single-Crystal Silicon. Nanocore Angewandte Chemie, 2005, 117(42): 7094-7097
    [6] Furusawa K, Kimura Y, Tagawa T. J Colloid Interf Sci, 1986, 109(1): 69-76
    [7] Schmidt H K. Synthesis and Processing of Nano-Scale Materials Through Chemistry, Sci Technol. Polym. Adv. Mater. (Proc Int. Conf. Front. Polym. Adv. Mater. ). fourthed. 1997 (Published 1998)
    [8] Hench L L, J K. West. Gel-silica hybrid optics. Chem. Rev., 1990, 90: 33-37
    [9] Chu X, Chung W I, Schmidt L. D. Sintering of sol-gel-prepared submicrometer particles studied by transmission electron microscopy. Am. Ceram. Soc., 1996, 79: 777-781
    [10] Zhang G, Liu M Preparation of nanostructure tin oxide using a sol-gel process based on tin tetrachloride and ethylene glycol. Mater. Sci., 1999, 34: 3213-3218
    [11] LucaV, Djajanti S, Howe R F Structure and electronic properties of sol-gel Titanium oxides studied by X-ray absorption spectroscopy. Phys. Chem. B, 1998, 102: 10650-10655
    [12] Ferroni L P, Cerrato G. Determination of amorphous interfaced phases in Al2O3/SiC nanocomposites by computer-aided high-resolution electron microscopy, Nanotechnology 1999, 10: 90-94
    [13]张立德,张彪.一种尺寸可控纳米二氧化硅的制备方法.CN1117022, 1996-02-21
    [14]张密林,丁立国,景晓燕等.纳米二氧化硅的制备、改性与应用研究进展.应用科技,2004,31(6):64-66
    [15]唐芳琼.从碱金属的硅酸盐制备纳米二氧化硅.CN1183379, 1998- 06- 03
    [16]汪国忠,张立德,何国良.一种粒度可控非晶纳米二氧化硅的制作方法.CN1145331, 1997- 03- 19
    [17]朱赛芬,吴周安.纳米材料的制备及在化工中的应用.上海化工,2001,8: 22-25
    [18]宋秀芹,马建峰,无机非金属材料的软化学合成.硅酸盐通报,1996,6: 57-60
    [19]米刚,陈平,任楠等.液固相水热法制备氧化硅纳米线.高等学校化学学报,2008,29(12): 2511-2515
    [20] Beck S J, Vartuli J C, Roth W J et al. Am Chem Soc, 1992, 114: 10834-10843
    [21]王玉琨,钟浩波,吴金桥.微乳液法制备条件对纳米SiO2粒子形貌和粒径分布的影响.精细化工,2002,19(8): 466- 468
    [22]陈建峰,邹海魁,刘润静等.超重力反应沉淀法合成纳米材料及其应用.现代化工,2001,21(9): 9-12
    [23]张鹏远,公延明,陈建峰.超重力碳分制备纳米氢氧化铝.华北工学院学报,2002,23(4): 235-239
    [24]刘海弟,贾宏,郭奋等.超重力反应沉淀法制备白炭黑的研究.无机盐工业,2003,35(1): 13-15
    [25]覃兴华,卢迪芬.反胶团微乳液法制备超微细颗粒的研究进展.化工新型材料,1998,2: 27-29
    [26]贾宏,郭锴,郭奋等.用超重力法制备纳米二氧化硅.材料研究学报,2001,15(1): 120- 124
    [27] Mandel T K, Fleming M, Walt D R. Chem Mater, 2000, 12:3481-3487
    [28]朱英,董鹏.石油大学学报(自然科学版),1999,23(3): 65-69
    [29] Smith E J.[J]. American Metal Market, 1999, 3: 25-29
    [30] Xia Y, Byron G, Yin Y, et al. Adv Mater, 2000, 12(10): 693-713
    [31] Uhlen M. Nature 1989,340: 733-734
    [32] Safarik I, Safarikova M.J. Chromatogr.B, 1999, 772: 33-53
    [33] Wong, Yuan N. Production and Use of Magnetic Porous Inorganic Materials, US Pat. 5, 610, 274, 1997, 3, 11
    [34] Zhang M J, Itoh T, Abe M.Jpn. J. Appl. Phys., 1997, 36: 243-246
    [35] Sinclair B. [J]. The Scientist, 1998, 12(13): 17-28
    [36]董鹏.单分散二氧化硅颗粒的研究进展.自然科学进展,2000,10(3): 201-207
    [37]董鹏,朱英.一种均一孔径模型催化剂载体的制备和表征.见:陈诵英编.催化剂制备技术基础.杭州:杭州大学出版社,1997,93-97
    [38]张道中.光子晶体.物理,1994,23(3): 141-147
    [39] Dong P, Wang L, Li L, et al. Study of monodisperse and bidisperse electrorheological fluids. In: Proceedings of International Conference on ERMR. Yonezawa, 1997
    [40] Caruso F, Nanoengineering of Particle Surfaces. Adv. Mater, 200l, 13(1): 11-22
    [41] Jin T, Tsutsumi S, Deguchi Y, et a1. Luminescnce property of the Terbium bipyrjdyl complex incorporated in silica matrix by a sol-gel method. J. Electrochem. Soc. 1995, 142, L195-L197
    [42] Jin T, Tsutsumi S, Deguchi Y, et a1. Preparation and luminescence characteristics of the Europium and Terbium complexes incorporated into a silica matrix using a sol-gel method. J. Alloy Comp. 1997, 252, 59-66
    [43] Jin T, Tsutsumi S, Deguchi Y, et al. AdachiLuminescence characteristics of the lanthanide complex incorporated into an ORMOSTL matrix using a sol-gel method. J. Electrochem. Soc. 1996, 143, 3333-3336
    [44] Mack H, Reisfeld R, Avnir D, Fluorescence of rare earth ions adsorbed on porous vycor glass. Chem. Phys. Lett. 1983, 99, 238-239
    [45] Tanaka K., Yoko T., Atarashi M., et a1. Preparation of Fe3O4 thin film by the sol-gel method and its magnetic properties. J. Mater. Sci. Lett. 1989, 8, 83-85
    [46] Caruso F, Lichtenfeld H, Donath E, et a1. Investigation of Electrostatic Interactions in Polyelectrolyte Multilayer FiIms: Binding of Anionic Fluorescent Probes to Layers Assembled onto Colloids. Macromolecules, 1999, 32, 2317-2322
    [47] Astoriza-Santos L, Koktysh D S, Mamedov A A, et al, One-pot synthesis of Ag@TiO2 core-shell nanoparticles and their layer-by-layer assembly. Langmuir, 2000, 16(6): 2731-2735
    [48] Pol VG, Motiei M, Gedanken A, et al. Sonochemical deposition of air-stable iron nano-particles on monodispersed carbon spherules. Chem.Mater, 2003, 15(6): 1378-1384
    [49] GPoI V, Gedanken A, Calderon-Moreno J. Deposition of gold nanoparticles on silica spheres: a sonochemical approach. Chem. Mater, 2003, 15(5): 1111-1118
    [50] Hermanson G T, Mallia A K, Smith P K. Immobilized Affinity Ligand Techniques. London: Academic, 1992
    [51] Mirkin CA, Letsinger RL, Mucic RC, et al. A DNA-based method for rationally assembling anoparticles into macroscopic materials. Nature, 1996, 382(6592): 607-609
    [52] Alivisatos P. The use of nanocrystals in biological detection. Nature Biotechnology, 2004, 22(1): 47-52
    [53] Waedow D, Bredol M, Koehler I, et a1. Manufacture of a phosphor composition with hematite. US Patent, No. 6013314
    [54] Qiang L, Lian G, Dongsheng L. Effects of the Coating Process on Nanoscale Y2O3:Eu3+ Powders. Chew. Mater, 1999, 11(3): 533-535
    [55] Zarnojan W, Mary W, Bechtel H, et al. Aluminate phosphor with a polyphosphate coating. US Patent, No 5998047
    [56] Vestal C R, Zhang Z J. Atom transfer radical polymerization synthesis and magnetic characterization of MnFe2O4/polystyrene core/shell nanoparticles. J. Am. Chem. Soc, 2002, 124(48): 14312-14313
    [57] GPoI V, Gedanken A, Calderon-Moreno J, Deposition of gold nanoparticles on silica spheres: a sonochemical approach. Chem. Mater, 2003, 15(5): 1111-1118
    [58] Hsu Wan P, Yu R, Matijevic E. Titania Coated Silica. J. Colloid Interface Sci, 1993, 156: 56-65
    [59]王金忠,赵岩,张彩培.正交设计在溶胶-凝胶法制备单分散球形SiO2中的研究.中国粉体技术,2003,9(1): 4-8
    [60]吴金侨,王玉琨.纳米材料的液相制备技术及其进展.西安石油学院学报,2002,17(3): 31-34
    [61] Arriagada F J, Osseo-Asare K. Synthesis of silica in a nonionic water-in-oil microemulsion. Colloid and Interface Science, 1999, 211: 210-220
    [62]周建新,徐宏等.用常压化学气相沉积法制备SiO2/S复合涂层的研究.材料保护,2007,40(2): 11-13
    [63] St?ber W, Fink A, Bohn E J. Controlled growth of monodisperse silica spheres in the micron size range. Journal of colloid and interface science, 1968, 26: 62-69
    [64]董鹏.由硅溶胶生长单分散颗粒的研究.物理化学学报,1998,14(2): 109-113
    [65]毛丹,姚建曦,王丹.有机溶剂对正硅酸乙酯水解制备二氧化硅微球的影响.稀有金属材料与工程,2007,36(1): 180-183
    [66]赵丽,余家国,程蓓等.单分散二氧化硅球形颗粒的制备与形成机理.化学学报,2003,61(4): 562-566
    [67]陈胜利,董鹏,杨光华.单分散二氧化硅形成过程中TEM观察和形成机理.无机材料学报,1998,13(3): 368-374
    [68]林健.催化剂对正硅酸乙酯水解-聚合机理的影响.无机材料学报,1997,12(3): 363-369
    [69] Zhao, R.-Y.; Dong, P.; Liang, W.-J.J. Univ. Petroleum1995, 5, 89 (in Chinese) (赵瑞玉,董鹏,梁文杰.石油大学学报,1995,5,89
    [70] Cho S H, Kwon S H, Yoo J S, et al. Cathodoluminescent characteristics of a spherical Y2O3:Eu phosphor screen for field emission display application. J. Electrochem. Soc, 2000, 147(8): 3143 -3147
    [71] Martinez-Rubio M I, Ireland T G, Fern G R, et al. A new application for microgels: Novel method for the synthesis of spherical particles of the Y2O3:Eu phosphor using a copolymer microgel of NIPAM and acrylic acid. Langmuir, 2001, 17(22): 7145-7149
    [72] Wakefield G, Holland E, Dobson P J, et al. Luminescence properties of nanocrystaline Y2O3:Eu. Adv. Mater, 2001, 13(20): 1557
    [73] Jing X, Ireland T, Gibbons C, et al. Control of Y2O3:Eu spherical particle phosphor size, assembly properties, and performance for FED and HDTV. J. Electrochem. Soc, 1999, 146(12): 4654-4658
    [74] Blasse G, Grabmaier B C. Luminescent Materials, Springer-Verlag, Berlin, Heidelberg, 1994
    [75] Chen Y, Iroh J O. Synthesis and Characterization of Polyimide/Silica Hybrid Composites. Chem. Mater, 1999, 11: 1218-1222
    [76] Ikesue A, Yoshida K. J Mater Sci, 1999, 34: 1189-1195
    [77] Ikesue A, Furustao I, Kamata K.. Optical Material, 2002, 19: 183-187
    [78] Ikesue A, Kinoshita T, Kamata K, et al. Fabrication and optical properties for high-performance polycrystalline Nd:YAG ceramics for solid-state lasers. J Am Ceram Soc, 1995, 78(4): 1033-1040
    [79] Wakefield G, Holland E, Dobson P J, et al. Luminescence properties of nanocrystalline Y2O3:Eu Adv. Mater, 2001, 13(20): 1557
    [80] Neeves A E, Birnboim M H. Comrosite Structures for the Entancement of Nonlinear-Optical Susceptibity. J. Opt. Soc. Am. B, 1989, 6: 787-795
    [81] Lu Y, Yin Y, Li Z-Y, et al. Synthesis and Self-Assembly of Au@SiO2 Core-Shell Colloids. Nano Lett, 2002, 2(7): 785-788
    [82] ChanY, Zimmer J P, Stroh M, et al. Incorporation of luminescent nanocrystals into monodisperse core-shell silica microspheres. Adv, Mater, 2004, 16(23-24): 2092
    [83] Schartl W. Crosslinked Spherical Nanoparticles with Core-Shell Topology. Adv, Mater, 2000, 12(24): 1899-1908
    [84] CarusoF. Nanoengineering of P article Surfaces. Adv. Mater, 2001, 13(1): 11-22
    [85] SuryanarayananV, Nair A S, Tom R T, et al. Porosity of core-shell nanoparticles. J. Mater. Chem, 2004, 17: 2661-2666
    [86] W.J. Miniscalco. Measurements of excited-state absorption in Ce3+:YAG. J Appl Phys, 1979, 49 (12): 6109-6111
    [87] Marek Grinberg, Anna Sikorska, Slawomir Kaczmarek. J Alloy Comp, 2000(300-301): 158-164

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700