用户名: 密码: 验证码:
厌氧条件下外加酶强化剩余污泥水解的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性污泥法是目前世界上应用最为广泛的污水生物处理技术,但是它存在一个很大的弊端,就是会产生大量的剩余污泥。其生成的剩余污泥量一般是污水处理量的0.3%-0.5%(以含水率97%计)。目前我国污泥产生量约为2500万t/a(按含水率80%计算),若不及时进行妥善的处理与处置,将会对环境造成直接或潜在的污染。污泥处理方面的投资可占整个污水处理厂总运行费用的25%-40%,甚至高达60%。从根本上减少污泥的污泥减量技术逐渐成为国际学术界共同关心的热点领域。水解是污泥消化的限速步骤,因此强化水解是污泥减量化的重要前提和基础。相对于物理法、化学法、生物法等污泥处理方法,外加酶水解污泥技术不但可以缩短消化时间,改善污泥消化性能,而且经济高效,易控制,其产物对环境也无污染副作用。结合后续工艺不仅可以实现污泥的“零排放”,还可以同时实现废水的高效生物降解和沼气产能的增加,应用前景良好。
     所谓污泥减量技术,是指在保证污水处理效果的前提下,通过利用物理、化学、生化的手段减少整个污水处理系统向外排放的生物固体量。本文综合介绍了国内外几种常见的污泥减量技术:降低细菌合成量的解偶联技术、增强微生物利用二次基质进行隐性生长的各种溶胞技术、利用食物链作用强化微型动物对细菌捕食的技术和胞外酶强化污泥水解技术。本文主要针对胞外酶强化污泥水解,实现污泥减量化作了深入的探讨。
     本研究采用向污泥中外加酶(a-淀粉酶和中性蛋白酶)强化污泥水解的处理方式,考察了单一酶作用时(投加量分别为0、30、60、120、180mg酶/gTS,水解时间分别为4、8、12h),酶投加量和水解时间对城市污水处理厂剩余污泥破解及减量化的影响。结果表明,外加酶可以促进污泥中悬浮固体的溶解和大分子有机物的降解。在厌氧条件下,外加酶水解反应在4 h内基本完成,a-淀粉酶和中性蛋白酶的最佳投加量均为60mg酶/gTS。当酶投加量为60mg酶/gTS时,淀粉酶比蛋白酶的水解效果好,SCOD/TCOD分别提高到22.3%和18.5%,VSS去除率分别达54.24%和39.70%。复合酶(a-淀粉酶和中性蛋白酶按一定配比混合)的水解效果比单一酶的效果好,当水解温度为50℃,蛋白酶和淀粉酶的配比为1:3时,水解效果最佳,VSS去除率达68.43%,还原糖和NH4+-N浓度分别提高了377%和201%。
     本研究对外加酶水解污泥过程的机理和动力学进行了分析探讨。酶催化污泥水解反应在4 h内基本完成,在此过程中,反应迅速,此后水解速率缓慢。污泥在酶水解处理的前4 h,VSS溶解反应遵循一级反应动力学方程。蛋白酶,淀粉酶和复合酶溶解速率常数Kh的大小分别为:0.12 h1、0.20 h-1、0.24 h-1,分别是空白对照组的5,8,10倍。温度和反应速率的关系符合阿仑尼乌斯方程,回归方程为(R=0.964),活化能为Ea=20.19 kJ/mol,指前因子A=263 L/(mg.min)。
     本研究还考察了在外加酶水解污泥过程中a-淀粉酶和中性蛋白酶酶活力的变化。结果表明,在水解过程中蛋白酶和淀粉酶的活力均呈先上升,后下降趋势,4 h左右两种酶活力均达到最高值,分别为2.57 U/mL和4.64 U/mL。酶活力的变化情况解释了酶水解反应过程中动力学曲线的变化情况。
Activated sludge method is used widely in biological wastewater treatment, but it will produce large amounts of excess sludge. It almost takes up 0.3%-0.5% of the amount of wastewater treatment. Annual sludge production is about 25 million tons in China presently (calculated by 80% of water content), which will pose a significant threat to the ecology system if it is not properly disposed. Costs for traditional treatment and disposal of excess sludge are quite expensive and it accounts for up to 60% of the total operation costs of a wastewater treatment plant. Sludge hydrolysis is a hot topic in the area of sludge reduction, and hydrolysis is the rate limiting step of sludge digestion. Therefore, enhancing sludge hydrolysis is important premise and base to reduce sludge. Compared with other sludge hydrolysis technology, such as physical, chemical and biological treatment, enhanced hydrolysis by additional enzyme can not only cut down digesting time, improve sludge digestibility, and reduce disposal costs, but also can be easily controlled, and its products are harmless to environment. Combined with the following process,it can realize sludge "zero discharge", and simultaneously realize high effective wastewater biodegradation or enhancement of biogas production.
     The technology of sludge reduction is the minimum of sludge biomass through physical, chemical, biological and chemical methods to meet the government effluent standard. The possible approaches for sludge reduction based on following aspects:uncoupling metabolism, cryptic growth enhanced through cell lysis and microfauna pry, sludge hydrolylsis by enzymes. Characteristics of each technology were compared, and the sludge reduction based on additional enzyme was discussed particularly in relevant research.
     In this investigation, the effects of commercial enzyme preparation containing alpha amylase and neutral protease on hydrolysis of excess sludge were evaluated. Protease and a-amylase were added singly, the dosage of enzyme and the hydrolysis time are 0,30,60,120, 180 mg enzyme/gTS and 4,8,12 h, respectively. The results indicated that additonal enzymes can enhance sludge hydrolysis. The hydrolysis basically completed within 4 h under anaerobic digestion, and the optimal dosage of enzyme is 60 mg enzyme/gTS. a-amylase had higher efficiency than protease, SCOD/TCOD rose to 22.3% and 18.5%, respectively.VSS reduction achieved respectively 54.24% and 39.70% at the optimal dosage of 60 mg enzyme/g TS. The hydrolysis rate of sludge improved with temperature increasing from 40 to 50℃, which could be well described by the amended Arrhenius equation. Mixed-enzymes (enzyme preparation containing alpha amylase and neutral protease) had great impact on sludge hydrolysis than single enzyme. The mixture of the two enzymes (protease: amylase=1:3) resulted in optimum hydrolysis efficiency, the efficiency of solids hydrolysis increased from 10%(control test) to 68.43% at the temperature of 50℃. Correspondingly, the concentration of reducing sugar and NH4+-N improved about 377% and 201%, respectively.
     According to the mechanism and kinetic analysis of enzymatic hydrolysis process, VSS solubilisation process within prior 4 h followed first-order kinetics, dring which the rate of the reaction is fast firstly, and then it slows down.The hydrolysis rate constants Kh for protease, amylase, mixed-enzyme treatment were 0.12,0.20 and 0.24 h-1, which were 5,8,10 times that of the blank, respectively. Obviously, the first-order hydrolysis rate constants obtained in this study followed an Arrhenius type of behavior R=0.964).The relationship between reaction rate constant and temperature was in accordance with Arrhenius equation, with activation energy 20.19 kJ/mol and preexponential factor 263 L/(mg.min).
     The variation of enzyme activity during sludge hydrolysis (protease and a-amylase) was also investigated. It was found that enzyme activity were both rose firstly, and reduced thereafter. The maximum enzyme activity were obtained at around 4h after hydrolysis,2.57 U/mL and 4.64 U/mL respectively for protease and a-amylase, which could well explain the curve of enzymztic reaction dynamics.
引文
[1]邓小林,王国华,任鹤云.上海城市污水处理厂的污泥处置途径探讨.中国给水排水,2000,16(5):19-22
    [2]梁鹏,黄霞,钱易.污泥减量化技术的研究进展.环境污染治理技术与设备,2003,4(1):44-52
    [3]何岩,周恭明.剩余污泥减量化技术的研究发展.环境技术,2004,1:39-42
    [4]张悦.我国城市污水处理与再生利用的技术决策要素探讨[EB/OL]. http: //blog.h2o-china.com/htmL/10/262010-2389.htmL,2008-03-31
    [5]Eastman J A, Ferguson J F. Solubilization of particulate organic carbon during the acid phase of anaerobic digestion. Water Pollution Control Federation,1981,53(3):352-366
    [6]Wawrzynczyk J, Recktenwald M, Norrlow O, et al. The function of cation-binding agents in the enzymatic treatment of municipal sludge. Water Research,2008,42(6-7):1555-1562
    [7]Ronja Beijer. Enzymatic treatment of wastewater sludge in presence of a cation binding agent-improved solubilisation and increased methane production [dissertation]. Sweden: University of Linkopings,2008,49-50
    [8]Ahuja S K, Ferreira G M, Moreira A R. Utilization of enzymes for environmental applications. Critical Reviews in Biotechnology,2004,24(2-3):125-154
    [9]Yasui H, Komatsu K, Goel R, et al. Full-scale application of anaerobic digestion process with partial ozonation of digested sludge.Water Science and Technology,2005,52(1-2): 245-252.
    [10]何品晶,顾国维,李笃中.城市污泥处理与利用.北京:科学技术出版社,2003,12-13
    [11]尹军,谭学军.污水污泥处理处置与资源化利用.北京:化学工业社,2004,4-5
    [12]姚刚.德国的污泥利用和处置(Ⅰ).城市环境与城市生态,2000,13(1):43-47
    [13]陈涛,熊先哲.污泥的农林处置与利用云南环境科学,2000,19(增刊):207-209
    [14]Campbell H W. Sludge management-future issues and trends. Water Science and Technology,2000,41(8):1-8
    [15]薛栋森.美国污水污泥的研究和利用概况.国外农业环境保护,1991,(1):31-33
    [16]Diane G, Carman G, Robert D. Sludge disposal trends around the globe. Water Engineering & Management,1993,140(2):17-20
    [17]蒋成爱,黄国锋,吴启堂.城市污水污泥处理利用研究进展.农业环境与发展,1999,(1):13-17
    [18]李军,陈邦林,胡建斌.高温突跃法处理城市污泥的研究.环境科学学报,2000,20(6):751-754.
    [19]Djafer M, Luck F, Rose J P, et al. Transforming sludge into arecyclable and valuable carbon source by wet air oxidation. Water Science and Technology,2000,41(8):77-83
    [20]Onaka T. Sewage can make Portland cement:a new technology for ultimate reuse of sewage sludge wet air oxidation. Water Science and Technology,2000,41(8):93-98
    [21]Chua H, Yu P H F. Production of biodegradable plastics fromchemical wastewater-a novel method to reduce excess activated sludge generated from industrial wastewater treatment. Water Science and Technology,1999,39(10-11):273-280
    [22]白晓慧.超声波技术与污水污泥及难降解废水处理.工业水处理,2000,20(12):8-10
    [23]Das D, Vezirog T N. Hydrogen production by biological processes:a survey of literature International Journal of Hydrogen,2001,26(1):13-28
    [24]朱核光,史家梁.生物产氢技术研究进展.应用与环境生物学,2002,8(1):98-104
    [25]杨素萍,赵春贵,曲音波.生物产氢研究与进展.中国生物工程杂志,2002,22(4):44-48
    [26]Nandi R, Sengupta S. Microbial production of hydrogen:an overview. Critical reviews inmicrobiology,1998,24(1):61-84
    [27]郑幸雄,林秋裕,李季眉.厌氧生物产氢机制及程序控制之技术研发概论.工业污染防治,2001,79:173-194\[28]张海涛.高效、清洁的新型能源一氢能.中国科技成果,2003,4:1-22
    [29]周未,王金全.制氢技术发展概况.贵州化工,2003,28(1):3-10\
    [30]Ekpenyong T E, Sridhar M K C and Asirua B M. Utilization of dried activated sludge as a feed supplement for pigs. Resource Conserve Recycling,1989,2(4):287-296
    [31]Frost H L. Land application, biological decontamination, and speciation of metal-laden sewage sludge:[dissertation]. Indiana:University of Nortre Dame,2001:62-63
    [32]Sopper W E. Municipal sludge use in land reclamation. Lewis:CRC Press,1993,110-112
    [33]Hong S M, Park J K, Lee Y O. Mechanism of microwave irradiation involved in the destruction of fecal coliforms from biosolids, Water Research.38 (2004),1615-1625
    [34]张自杰.排水工程(下册).北京:中国建筑工业出版社,2000,6
    [35]Weemaes M P J, Verstraete W H. Evaluation of current wet sludge disintegration techniques. Journal of Chemical Technology & Biotechnology,1998,73(2):83-92
    [36]Angelidaki I, Ellegaard L, Ahring B K. A comprehensive model of anaerobic bio-conversion of complex substrates to biogas. Biotechnology Bioengineeing,1999,63(3): 363-372.
    [37]毛宗强,刘志华.中国氢能发展战略思考.电池,2002,32(3):150-152.
    [38]肖本益,魏源送,刘俊新.微生物发酵产氢的影响因素分析.微生物学通报,2004,31(3):130-135
    [39]Ting C H, Lin K R, Lee D J, et al. Production of hydrogen and methane from wastewater sludge using anaerobic fermentation. Water Science and Technology,2004,50(9):223-228.
    [40]Watson S D, Akhurst T, Whiteley C G, et al. Primary sludge floc degradation is accelerated under biosulphidogenic conditions Enzymological aspects. Enzyme and Microbial Technology,2004,34(6):595-602
    [41]Blonskaji V, Vaalu T. Single-and two-stage anaerobic mesophilic sludge digestion with thermal pretreatment. In:World Environment Congress and Exhibition, Istanbul,2002, 1463-1470
    [42]Poll C, Thiede A, Wermbrer N. Micro-scale distribution of microorganisms and microbial enzyme activities in a soil with long-term organic amendment. European Journal of Soil Science,2003,54(4):715-720
    [43]Chu C P, Lee D J. Structural analysis of sludge flocs. Advanced Powder Technology, 2004,15(5):515-32
    [44]Al-Shiekh K W, Shanableh A, Rigby P, et al. Selection of hydrothermal pre-treatment conditions of waste sludge destruction using multicriteria decision-making. Journal of Environmental Management,2005,75(1):53-64
    [45]Kambourova N, Kirilova R, Mandeva A, et al. Purification and properties of thermo-stable lipase from a thermophilic Bacillus stearothermophilus MC 7. Journal of Molecular Catalysis B:Enzymatic,2003,22(5-6):307-313
    [46]Vlyssides A G, Karlis P K. Thermal-alkaline solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion. Bioresource Technology,2004,91(2):201-206
    [47]Kim Y K, Bae J H, Oh B K, et al. Enhancement of proteolytic enzyme activity excreted from Bacillus stearothermophilus for a thermophilic aerobic digestion process. Bio-resource Technology,2002,82(2):157-164.
    [48]王治军,王伟.剩余污泥的热水解试验.中国环境科学,2005,25:56-60
    [49]王治军,王伟.热水解预处理改善污泥的厌氧消化性能.环境科学,2005,26(1):68-71
    [50]Shizas I, Bagley D M. Fermentative hydrogen production in a system using anaerobic digester sludge without heat treatment as a biomass source.Water Science and Technology, 2005,52(1-2):139-144
    [51]Zhu H, Chen J H. Study of hydrolysis and acidification process to minimize excess biomass production, Journal of Hazardous Materials,2005,127(1-3):221-227
    [52]Sakai Y, Aoyagi T, Shiota N, et al. Complete decomposition of biological waste sludge by thermophilic aerobic bacteria. Water Science and Technology,2000,42(9):81-88
    [53]Whiteley C G, Melamane X, Pletschke B, et al. The enzymology of sludge solubilisation utilizing sulphate reducing systems properties of proteases and phosphatases. Water Research,2003,37(2):289-296
    [54]李庄,高红亮,常忠义,等.城市污泥好氧发酵菌种——乳酸菌的初步筛选.生命科学仪器,2004,2(5):29-32
    [55]Miah M S, Tada C, Yingnan Y. Aerobic thermophilic bacteria enhance biogas production. Journal of Material Cycles and Waste Management,2005,7(1):48-54
    [56]Li J Z, Mavinic D S, Kelly H G. Determining the volatile fatty acid equivalent in thermophilic aerobically digested sludge supernatant. Journal of Environmental Engineering,2004,130(4):397-407
    [57]Johansen J E, Bakke R. Enhancing hydrolysis with microaeration. Water Science and Technology,2006,53(8):43-50
    [58]Saby S, Djafer M, Chen G H. Feasibility of using a chlorination step to reduce excess sludge in activated sludge activagted sludge process. Water Research,2002,36(3):656-666
    [59]苏凤宜,邢新会.过氧乙酸对剩余污泥的减容研究.高校化学工程学报,2004,18(4):471-476
    [60]Lee N M, Welander T. Reducing sludge Production in aerobic wastewater treatment through manipulation of the ecosystem.Water Research,1996,30(8):1781-1790
    [61]酶.http://baike.baidu.com/view/1326.htm?fr=ala0_1_1
    [62]王希成.生物化学.北京:清华大学出版社,2001,62
    [63]陈石根,周润琦.酶学.上海:复旦大学出版社,1997,1-4
    [64]孙君社,江正强,刘萍.酶与酶工程及其应用.北京:化学工业出版社,2006,9-10
    [65]陈石根,周润琦.酶学.上海:复旦大学出版社,1997,171-182
    [66]徐红亮,武小鹰,郑平.胞外多聚物及其对废水生物处理的影响.环境科学与技术,2005,28(S1):121-124
    [67]Goel R, Mino T, Satoh H, et al. Enzyme activities under anaerobic and aerobic conditions in activated sludge sequencing batch reactor.Water Research,1998,32 (7):2081-2088
    [68]Shanableh A, Jomaa S. Production and transformation of volatile fatty acids from sludge subjected to hydrothermal treatment.Water Science and Technology,2001,44(10):129-135
    [69]周群英,高延耀.环境工程微生物学.北京:高等教育出版社,2000,85
    [70]Ahuja S K, Ferreira G M, Moreira A R. Utilization of enzymes for environmental applications. Critical reviews in Biotechnology,2004,24(2-3):125-154
    [71]Snaidr J, Amann R, Huber I, et al. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Applied and Environmental Microbiology,1997,63(7): 2884-2896
    [72]Blackall L L, Burrell P C, Gwilliam H. The use of 16S rDNA clone libraries to describe the microbial diversity of activated sludge communities.Water Science and Technology, 1998,37(4):451-454
    [73]Wawrzynczyk J, Dey E, Norrlow, O, et al. Alternative method for sludge reduction using commercial enzymes. In:The proceedings of the 8th European Biosolids and Organic Residuals Conference. UK,2003.1-5
    [74]Davidsson A, Wawrzynczyk J, Norrlow O, et al. Strategies for enzyme dosing to enhance anaerobic digestion of sewage sludge. Journal of Residuals Science and Technology, 2007,4 (1):1-7
    [75]Recktenwald M, Wawrzynzczyk J, Dey S E, et al. Improved industrial scale anaerobic digestion by the addition of glycosidic enzymes.Water Research,2008,43(13):1536-1540
    [76]Ronja Beijer. Enzymatic treatment of wastewater sludge in presence of a cation binding agent-improved solubilisation and increased methane production:[dissertation]. Sweden:University of Linkopings,2008,49-50
    [77]Ahuja S K, Ferreira G M, Moreira A R. Utilization of enzymes for environmental applications. Critical reviews in Biotechnology,2004,24(2-3):125-154
    [78]Michael R, Joanna W, Estera S D,et al. Enhanced efciency of industrial-scale anaerobic digestion by the addition of glycosidic enzymes. Journal of Environmental Science and Health PartA,2008,43(13):1536-1540
    [79]Karam J, Nicell J A. Potential Application of Enzymes in Waste Treatment. Journal of Chemical Technology & Biotechnology,1997,69:141-153
    [80]Jung J H, Xing X H, Matsumoto K. Recoverability of protease released from disrupted excess sludge and its potential application to enhanced hydrolysis of proteins in wastewater. Biochemical Engineering Journal,2002,10(1):67-72
    [81]Whiteley C G, Heron P, Pletschke B, et al. The enzymology of sludge solubilisation utilising sulphate reducing systems. Properties of proteases and phosphatases. Enzyme and Microbial Technology,2002,31(4):419-424
    [82]Cammarota M C, Freire D M G A review on hydrolytic enzymes in the treatment of wastewater with high oil and grease content. Bioresource Technology,2006,97(17): 2195-2210
    [83]Aster Bio. "Case study:Municipal sewage treatment." (http://www. asterbio. com/case_studies/Municipal_Wastewater.pdf),2005-6-23
    [84]Kim H J, Kim S H, Choi Y G, et al. Effect of enzymatic pretreatment on acid fermentation of food waste. Journal of Chemical Technology Biotechnolgoy,2006,81(6): 974-980
    [85]Valladaoa A B G, Freirea D M G, Cammarota M C. Enzymatic pre-hydrolysis applied to the anaerobic treatment of effluents from poultry slaughterhouses. International Biodeterioration & Biodegradation,2007,60(4):219-225
    [86]Roman H J, Burgess J E, Pletschke B I. Enzyme treatment to decrease solids and improve digestion of primary sewage sludge. African Journal of Biotechnology,2006,5 (10):963-967
    [87]Wawrzynczyk J, Recktenwald M, Norrlow O, et al. The function of cation-binding agents in the enzymatic treatment of municipal sludge. Water Research,2008,42(6-7):1555-1562
    [88]Zhou J, Wang Y H, Chu J, et al. Optimization of cellulase mixture for efficient hydrolysis of steam-exploded corn stover by statistically designed experiments. Bioresource Technology,2009,100(2):819-825
    [89]Ruggaber T P, Talley J W. Enhancing bioremediation with enzymatic processes:A review. Practice Periodical of Hazardous,2006,10(2):73-85
    [90]Pinnekamp J. Effects of thermal pretreatment of sewage-sludge on anaerobic digestion. Water Science and Technology,1989,21(4-5):97-108
    [91]He P J, Lu F, Shao L M, et al. Enzymatic Hydrolysis of Polysaccharide-Rich Particulate Organic Waste. Biotechnology Bioengineering,2006,93(6):1145-1151
    [92]Poll C, Thiede A, Wermbrer N, et al. Micro-scale distribution of microorganisms and microbial enzyme activities in a soil with long-term organic amendment. European Journal of Soil Science,2003,54(4)715-720
    [93]Smith S R. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environment International, 2009,35(1):142-156
    [94]Frlund B, Palmgren R, Keiding K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin.Water Research,1996,30(8):1749-1758
    [95]Ji R, Brune A. Digestion of peptidic residues in humic substances by an alkali-stable and humic-acid-tolerant proteolytic activity in the gut of soil-feeding termites. Soil Biology and Biochemistry,2005,37(9):1648-1655
    [96]Feng L Y, Yan Y, Chen Y G. Kinetic analysis of waste activated sludge hydrolysis and short-chain fatty acids production at pH 10. Journal of Environmental Sciences,2009, 21(5):589-594
    [97]Pinnekamp J. Effects of thermal pretreatment of sewage-sludge on anaerobic digestion. Water Science and Technology,1989,21(4-5):97-108
    [98]Zhou J, Wang Y H, Chu J, et al. Optimization of cellulase mixture for efficient hydrolysis of steam-exploded corn stover by statistically designed experiments. Bioresource Technology,2009,100(2):819-825
    [99]Ferreiro N, Soto M. Anaerobic hydrolysis of primary sludge:Influence of sludge concentration and temperature.Water Science and Technology,2003,47(12):239-246

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700