用户名: 密码: 验证码:
青海省大柴旦红灯沟地区滩间山群地层综合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以红灯沟地区区域成矿背景、研究区的前人工作资料和红灯沟矿区研究中存在的问题为切入点,在实测地层剖面的基础上,应用岩石学、地球化学理论和方法,开展变质岩原岩恢复工作,建立含矿地层层序,探讨硅质岩的成因,并分析地层的沉积相和古地理。
     在对矿区地层剖面实测和室内薄片鉴定的基础上,认为红灯沟矿区区主要有7种岩石类型;通过对变质岩岩石化学全分析,利用变质岩原岩恢复方法,认为本区变质地层的原岩是一套火山-沉积岩系,以陆源碎屑岩和碳酸盐岩为主体,含有火山物质。
     地层全岩206Pb/204Pb、207Pb/204Pb、208Pb/204Pb的变化范围分别是17.404-17.758、15.528-16.158、37.278-38.467,μ值介于9.43-10.74之间,Th/U比值介于3.65-4.19之间。根据Pb同位素特征及206Pb/204Pb-207Pb/204Pb关系图,显示红灯沟矿区地层铅可能主要来源于下地壳物质。
     地层中的硅质岩主要呈孤立的透镜体存在,空间上成带出现,局部可见硅质岩的夹层及透镜体,其中可见鲜红色团块被暗红色石英包围的现象。通过硅质岩中Mn、Ti和稀土元素特征分析,认为红灯沟硅质岩是属于热水沉积成因,形成于活动大陆边缘的岛弧及弧后的火山沉积盆地中,与中基性火山活动密切相关,受同生断裂带的控制,具有浅水洼地环境特点。
     通过对沉积环境、沉积相及盆地古地理演化等分析,首次提出其沉积环境是陆源、内源和火山来源三者混杂,水深和水动力条件多变,构造条件较动荡的滨浅海环境,并在此基础上建立了红灯沟矿区滩间山群火山-沉积地层的沉积相模式。
     红灯沟矿区地层中Cu、Au平均含量分别为74.97×10-6和4.62×10-9。二者同步增高,有共同来源的特点。因子分析未发现与Au和Cu的升高有明显相关的其它元素特征,说明Au和Cu的矿化作用并非由地层本身提供物质来源。
Based on the regional metallogenic setting, data of previous work, existing problems and work of stratigraphic section measuring of Hongdenggou field, it is studied that protolish reconstruction of metamorphic rocks, construction of ore-bearing stratigraphic sequence, genesis of sillcalite, and analysis of sedimentary facies and palaeogeographic environment of the area. Methods of petrology and geochemistry are used.
     Through stratigraphic section measurement and laboratory study, rocks of Hongdenggou field are categorized to 7 types. By means of full-chemical analysis on metamorphic rock samples and protolish reconstruction, the field metamorphic preexisting rocks are demonstrated to be a series of volcanic-sedimentary rocks containing terrigenous clasolite and carbonate rock as the main compositions as well as volcanic materials be the minor ones.
     Variations of 206Pb/204Pb、207Pb/204Pb、208Pb/204Pb are 17.404-17.758、15.528-16.158 and 37.278-38.467 respectively, valueμin 9.43-10.74 and Th/U in 3.65-4.19. Data of Pb isotope testing and chart of 206pb/204pb-207pb/204pb suggest lead in strata of Hongdenggou area might originate from lower crust.
     Sillcalite occurs mainly as isolated podiform in strata and as zones in space domain, in which sillcalite interlayers and lenses exist locally. In the interlayers and lenses, scarlet lumps are surrounded by dark-red quartz. Results of Mn, Ti and REE analysis show that sillcalite of Hongdenggou arose from hydrothermal sedimentation and located in island arc of active continental margin and back-arc volcanic sedimentary basin. Therefore, the sillcalite is closely related to intermediate-basic volcanic activities, governed by syngenetic fault zones, and formed in the condition of shallow-water bottomland.
     Based on analysis of sedimentary environment, sedimentary facies and evolution of basin paleogeography, littoral-neritic sea sedimentary condition is proposed for the first time for Hongdenggou area, which means terrigenous, endogenous and volcanic mixed material sources, multivariant water depths, hydrodynamic and tectonic conditions for deposition. Consequently, the sedimentary facies model of volcanic-sedimentary formation for Tanjianshan Group of Hongdenggou field is established.
     The average concentrations of Cu and Au in field strata are 74.97×10-6 and 4.62×10-9 respectively, which increase synchronously and have the same origin. In factor analysis, no other elements were found obviously related with this increasement, which suggests that not the strata but other source(s) provided the substance and resulted in the mineralization for Cu and Au.
引文
[1]Blatt H, Middleton G. V. Murry R. Origin of Sedimentary Rocks [M]. New Jersey. PRENTICE-HALL, INC. Englewood Cliffs,1980:1-782.
    [2]Cline J. S., Hofstra A. H. Ore-fluid evolution at the Getchell Carlin-type gold deposit [J]. Nevada, USA, European Journal of Mineralogy,2000, (12):195-212.
    [3]Cook N. J., Chryssoulis S. L. Concentrations of invisible gold in the common sulfides [J]. The Canadian Mineralogist,1990, (28):1-16.
    [4]Elderfield H. The oceanic chemistry of rare earth elements [J]. Roy. Soc London, 1988, (325):105-126.
    [5]Fleet M. E., Mumin A. H. Old-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin trend gold deposits and laboratory synthesis. American Mineralogist, 1997, (82):182-193.
    [6]Groves D. I. and Foster R. P. Archaean lode gold deposits. In: R. P. Foster, Editor, Gold Metallogeny and Exploration, Blackie,1991:63-103.
    [7]H.G.里丁.沉积环境和相[M].北京:科学出版社,1985.
    [8]Hofstra A. H., Cline J.S. Characteristics and models for Carlin-type gold deposits. Reviews in Economic Geology,2000, (13):163-220.
    [9]Klinkhammer G., Elderfield H. Rare earth elements in seawater near hydrothermal vents [J]. Nature,1983, (305):185-188.
    [10]Mclennan S. M. Rare earth elements in sedimentary rocks: influences of provenance and sedimentary processes [J]. Reviews in Mineraloy,1989, (21):169-200.
    [11]Murry R W. Chemical criteria to identify the depositional environment of chert general principles and applications [J]. Sedimentary Geology,1994,90(3-4): 213-232.
    [12]Murry R W., Buchnoltz M R, T B,et al. Rare earth, major and trace element composition of Monterey and DSDP chert and associated host sediment. Assessing the influence of chemical fractionation during diagenesis [J]. Geochimica et Cosmochimica Acta,1992,56(7):2657-2671.
    [13]Murry R W., Buchnoltz T, Brink M R, et al. Rare earth, major and trace element in chert from the Franciscan Complex and Monterey Group, California Assessing REE sources to fine- grained marine sediments [J]. Geochimica et Cosmochimica Acta, 1991, (55):1875-1895.
    [14]Murry R W., Buchnoltz T, Brink M R, et al. Interoceanic Variation in the rare earth, major and trace element depositional chemistry of chert perspectives gained from the DSDP and ODP record [J].Geochim.Cosmochim. Acta,1992, (56):1963-1987.
    [15]Shimizu H. Cerium in chert as an indication of marine envrionment of its formation [J]. Nature,1977, (266):348-364.
    [16]Sugisaki R, Kinoshita T. Major element chemistry of the sediments on the central Pacific Transect, Wake to Tahiti, GH80-1 cruise [J]. Geol. Sury. Jpn, Cruise Rep. 1982, (18):293-312.
    [17]W.斯瓦尔扎克.沉积模型和定量地层学(中译本)[M].北京:地质出版社,1984
    [18]Yamamoto K.Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shiman to Terranes [J]. Sedimentary Geology,1987,52(1-2):65-108.
    [19]陈敬安,万国江,唐德贵等.洱海近代气候变化的沉积物粒度与同位素记录[J].自然科学进展,2000,10(3):253-259.
    [20]陈敬安,万国江,张峰等.不同时间尺度下的湖泊沉积物环境纪录-以沉积物粒度为例[J].中国科学(D辑),2003,33(6):563-568.
    [21]程日辉,王国栋,王璞.松辽盆地白垩系泉三段—嫩二段沉积旋回与米兰科维奇周期[J].地质学报,2008,82(1):55-64.
    [22]程裕淇.中国区域地质概论[M].北京:地质出版社,1994:216-221.
    [23]邓吉牛.锡铁山地区铅锌矿床地质找矿研究进展[R].2002.
    [24]邓俊国,王亚欣.保定地区阜平群变质岩岩石特征及原岩分析[J].保定师专学报,2000,13(2):31-35.
    [25]丁春梅.滩间山金矿的成因分析[J].青海科技.2007,(5):32-36.
    [26]杜远生,朱杰,顾松竹等.造山带寒武系-奥陶系硅质岩沉积地球化学特征及其对多岛洋的启示[J].中国科学D辑:地球科学,2007,37(10):1314-1329.
    [27]樊俊昌,李锋.青海锡铁山矿区滩间山群新认识[J].地质与勘探,2006,42(6):21-25.
    [28]冯胜斌,周洪瑞,燕长海等.岭二郎坪群硅质岩热水沉积地球化学特征及其地质意义[J].沉积学报,2007,25(4):564-573.
    [29]郭友钊,赵国春,董杰.冀北变质岩磁化率特征与变质原岩的初探[J].物探与化探,2001,25(5):391-396.
    [30]何俊国,周永章,杨志军等.地质地球化学特征及其成矿效应[J].矿产与地质,2004,5(18):405-409.
    [31]胡斌,戴塔根,胡瑞忠等.滇西雪山河变质岩群的矿物组成与原岩特征[J].矿物学报,2004,24(4):420-424.
    [32]赖绍聪,邓晋福,赵海玲.柴达木北缘奥陶纪火山作用与构造机制[J].西安地质学院报,1996,18(3):8-14.
    [33]李峰,李保珠.柴达木盆地北缘滩间山群新厘定[J].西北地质,2006,39(3):83-90.
    [34]李峰,吴志亮.柴达木北缘滩间山群时代及其地质意义[J].大地构造与成矿学,2007,31(2):226-233.
    [35]李怀坤,陆松年.柴达木北缘新元古代重大地质事件年代格架[J].现代地质,1999,13(2):224-225.
    [36]李毅,苏夏征,陈大经等.广西热水沉积矿床中硅质岩岩石学及岩石化学特征[J].矿产与地质,2007,21(4):445-451.
    [37]梁锦,李红中.硅质岩的传统研究方法及意义[J].中山大学研究生学刊,2008,29(3):24-32.
    [38]刘宝珺.沉积岩石学[M].北京:地质出版社,1980:1-497.
    [39]鹿化姐.安芷生洛川黄土粒度组成的古气候意义[J].科学通报,1997,42(1):66-69.
    [40]路远发.GeoKit:一个用VBA构建的地球化学工具软件包[J].地球化学,2004,33(5):459-464.
    [41]青海省地层表编写小组.西北地区区域地层表-青海省分册[M].北京:地质出版社,1980.
    [42]青海省地质局.1/5万区域地质调查报告(锡铁山幅、全集河幅)[R].1988.
    [44]青海省地质局.青海省区域地质志[M].北京:地质出版社,1984.
    [45]青海省地质矿产局.青海省区域地质志[M].北京:地质出版社,1991:562-574.
    [46]青海省地质矿产局.青海省岩石地层[M].武汉:中国地质大学出版社,1997.
    [47]施棋,王建民,陈发虎.石羊河古终端湖泊沉积物粒度特征与沉积环境初探[J].兰州大学学报(自然科学版),1999,35(1):194-198.
    [48]史仁灯,杨经绥,吴才来等.柴达木北缘超高压变质带中的岛弧火山岩[J].地质学报,2004,78(1):52-64.
    [49]汪林峰,李峰.滩间山群火山岩特征及其成岩构造背景[J].科技情报开发与经济,2007,17(21):162-166.
    [50]王良忱,张金亮.沉积环境和沉积相[M].北京:石油工业出版社,1996.
    [51]王学求,谢学锦.金的勘查地球化学理论与方法·战略与战术[M].山东科学技术出版社,2000:1-309.
    [52]卫管一,张长俊.岩石学简明教程[M].北京:地质出版社,1996:1-202.
    [53]邬介人,任秉琛.青海锡铁山块状硫化物矿床的类型及地质特征[J].中国地质科学院西安地质矿产研究所所刊,1987,20:1-30.
    [54]辛后田,王惠初,周世军.柴北缘的大地构造演化及其地质事件群[J].地质调查与研究,2006,29(4):311-320.
    [55]徐学义,赵江天,李向民等.北祁连山早古生代硅质岩稀土元素特征及构造环境意义[J].地质科技情报,2003,22(3):22-26.
    [56]许志琴,杨经绥,吴才来等.柴达木北缘超高压变质带形成与折返的时限及机制[J].地质学报,2003,77(2):163-176.
    [57]鄢明才,迟清华.中国东部地壳与岩石的化学组成[M].科学出版社.1997.
    [58]杨经绥,史仁灯,吴才来,陈松永.柴达木盆地北缘新元古代蛇绿岩的厘定——罗迪尼亚大陆裂解的证据[J].地质通报,2004,23(9-10):892-898.
    [59]杨经绥,许志琴等.我国西部柴北缘地区发现榴辉岩[J].科学通报,1998,43:1544-1548.
    [60]张德会.锡铁山铅锌矿同位素年龄测定及矿床成因探讨[R],2004.
    [61]张德全,丰成友,李大新等.柴北缘—东昆仑地区的造山型金矿床[J].矿床地质,2001,20(2):137-146.
    [62]张海祥,张伯友.北星子群变质岩的原岩恢复及其形成构造环境判别[J].中国地质,2003,30(3):254-260.
    [63]张洪,靳鹤龄,苏志珠等.全新世浑善达克沙地粒度旋回及其反映的气候变化[J].中国沙漠,2005,25(1):2-7.
    [64]张建新,杨经绥,许志琴.柴北缘榴辉岩的峰期和退变质年龄:来自U-Pb及Ar-Ar同位素测定的证据[J].地球化学,2000,29(3):217-222.
    [65]赵澄林,朱筱敏.沉积岩石学(第三版)[M].北京:地质出版社,2001:1-407.
    [66]赵风清,郭进京,李怀坤等.青海锡铁山地区滩间山群的地质特征及同位素年代[J].地质通报,2003:28-31.
    [67]赵江天,夏林圻,夏祖春等.北祁连山大陆裂谷硅质岩的稀土元素判别[J].科学通报,1993,44(6):665-69.
    [68]周永章,付伟,杨志军等.藏南地区中生代硅质岩的地球化学特征及其成因意义[J].岩石学报,2008,24(3):600-607.
    [69]周永章.广西丹池盆地热水成因的硅质岩的沉积地球化学特征[J].沉积学报,1990(3):75-83.
    [70]朱杰,杜远生.北祁连造山带老虎山奥陶系硅质岩地球化学特征及古地理意义[J].古地理学报,2007,9(7):69-74.
    [71]庄儒新,李峰.柴达木盆地北缘滩间山群火山岩及形成环境[J].云南地质,2006,25(2):209-225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700