用户名: 密码: 验证码:
汽车悬架系统的有限频域控制与采样控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于和汽车的整体性能密切相关,汽车主动悬架系统一直是近年来的研究热点。本文针对汽车主动悬架系统控制中的两个热点问题――有限频域控制问题和数字采样控制问题进行了研究,提出了相应的控制器设计方法。
     在有限频域H∞控制中,有别于现有的汽车悬架系统H∞控制方法在全频域下进行扰动衰减,本文的控制器设计方法可以实现在有限频域下的扰动抑制,使振动在人体所敏感的频率范围内被最大程度衰减。通过使用广义Kalman-Yakubovich-Popov引理,从扰动到控制输出的H∞范数在关心的频域范围内被最小化,进而改善驾驶舒适度。同全频方法相比较,有限频域方法在特定的频域内可以更加有效的进行控制,与此同时,悬架设计中的一些必要的时域约束也都可以得到保证。
     状态反馈控制可以很好的对系统实现控制,结合广义KYP引理,本文首先给出了有限频域下的状态反馈控制器设计方法,针对汽车悬架系统的有限频域特性进行了H∞控制。状态反馈控制是以所有的状态变量均是可测量为前提的,这在实际中往往不容易达到,为了适应实际情况,本文针对状态的不完全可测量情况又提出了有限频域下的动态输出反馈控制器设计方法,并借用四分之一主动悬架系统模型,分别了对状态反馈闭环系统和输出反馈闭环系统进行时域和频域的仿真验证,仿真结果验证了控制器设计的有效性。
     数字采样控制问题是汽车悬架系统控制中的另外一个难点问题,它的控制难点在于系统中同时包含连续时间信号和离散时间信号,传统的控制方法往往十分受限。本文通过使用一种输入时滞的方法,将采样悬架系统转化为带有时滞的连续时间系统,这种转化包含有不可导的时变时滞,最后,控制器设计被转化为一个带有线性矩阵不等式(LMI)约束的凸优化问题进行求解,为了满足车辆行驶中的参量变化,我们进一步设计了鲁棒控制器。仿真结果验证了控制器设计的有效性。
Vehicle active suspensions have been a hot research topic for many years due totheir important role in vehicle performance. In this paper, two hot issues of vehicleactive suspension system are considered, that is, finite frequency control and sampled-data control, and the corresponding controller design method is given, respectively.
     Different from the existing H∞control methods, which conduct disturbance at-tenuation within the entire frequency domain, this paper addresses the problem of H∞control for active vehicle suspension systems in finite frequency domain. By usingthe generalized Kalman-Yakubovich-Popov (KYP) lemma, the H∞norm from the dis-turbance to the controlled output is decreased in specific frequency band to improvethe ride comfort. Compared with the entire frequency approach, the finite frequencyapproach suppresses the vibration more effectively for the concerned frequency range.In addition, the time-domain constraints are guaranteed in the controller design.
     State feedback control is a useful control strategy in modern control system.Combined with the generalized KYP lemma, a state feedback H∞controller is de-signed firstly, in order to meet the finite frequency characteristic of the vehicle sus-pension system. State feedback control is based on that all the state variables aremeasurable, which is often not easy to achieve in practice. In order to meet the actualsituation, in this paper, an dynamic output feedback controller is also designed, and aquarter-car model with active suspension system is considered to illustrate the effec-tiveness of the designed controllers (state feedback and dynamic output feedback) inboth frequency domain and time domain.
     Sampled-data control is a difficult problem in the area of vehicle suspension sys-tem, since both continuous-time signal and discrete-time signal are contained in thecontrol system, which leads to the limitation of traditional control methods. By usingan input delay approach, the active vehicle suspension system with sampling mea-surements is transformed into a continuous-time system with a delay in the state. Thetransformed system contains possibly non-differentiable time-varying delay. Finally,the controller design is cast into a convex optimization problem with LMI constraints,and the controller designed is robust in order to meet the actual system with uncertain parameters. The effectiveness of the proposed approach is illustrated by a realisticdesign example.
引文
1孙鹏远.基于LMI优化的主动悬架多目标控制研究.吉利大学博士论文.2004
    2方子帆.基于MR阻尼器的半主动悬架控制方法研究.重庆大学博士论文.2006
    3 J. Swevers, C. Lauwerys, B. Vandersmissen, et al. A Model-free Control Struc-ture for the On-line Tuning of the Semi-active Suspension of a Passenger Car .Mechanical Systems and Signal Processing. 2007, 21:1422–1436
    4 J. J. H. Paulides, L. Encica, E. A. Lomonova, et al. Design Considerations for aSemi-active Electromagnetic Suspension System. IEEE Trans. Magnetics. 2006,42(10):3446–3448
    5 M. Ieluzzi, P. Turco, M. Montiglio. Development of a Heavy Truck Semi-activeSuspension Control. Control Engineering Practice. 2006, 14:305–312
    6 H. P. Willumeit, F. Bohm. Wheel Vibrations and Transient Tire Forces. VehicleSystem Dynamics. 1995, 24(6-7):525–550
    7 C. C. Liang, C. F. Chiang, T. G. Nguyen. Biodynamic Responses of SeatedPregnant Subjects Exposed to Vertical Vibrations in Driving Conditions. VehicleSystem Dynamics. 2007, 45(11):1017–1049
    8 M. Gobbi, J. C. Botero, G. Mastinu. Improving the Active Safety of Road Vehi-cles by Sensing Forces and Moments at the Wheels. Vehicle System Dynamics.2008, 46:957–968
    9 T. T. Fu, D. Cebon. Economic Evaluation and the Design of Vehicle Suspensions
    10 H. P. Du, N. Zhang. Fuzzy Control for Nonlinear Uncertain ElectrohydraulicActive Suspensions with Input Constraint. IEEE Trans. Fuzzy Systems. 2009,17(2):343–356
    11 S. J. Huang, W. C. Lin. Adaptive Fuzzy Controller with Sliding Surface forVehicle Suspension Control . IEEE Trans. Fuzzy Systems. 2003, 11(4):550–559
    12 A. Barr, J. Ray. Control of an Active Suspension Using Fuzzy Logic . Pro-ceedings of the Fifth IEEE International Conference on Fuzzy Systems. 1996,1:42–48
    13 P. Guarneri, M. Rocca, G.and Gobbi. A Neural-network-based Model for theDynamic Simulation of the Tire/suspension System While Traversing Road Ir-regularities . IEEE Trans. Neural Networks. 2008, 19(9):1549–1563
    14 M. Yu, S. B. Choi, D. X. M. et al. Fuzzy Neural Network Control for Vehicle Sta-bility Utilizing Magnetorheological Suspension System . Journal of InternationalMaterial Systems and Strucctures. 2009, 20(4):457–466
    15 L. Zuo, J.-J. E. Slotine, S. Nayfeh. Model Reaching Adaptive Control for Vibra-tion Isolation . IEEE Trans. Control Systems Technology. 2005, 13(4):611–617
    16 I. Fialhm, G. J. Balas. Road Adaptive Active Suspension Design Using LinearParameter-varying Gain-scheduling . IEEE Trans. Control Systems Technology.2002, 10(1):43–54
    17 G. Priyandoko, M. Mailah, H. Jamaluddin. Vehicle Active Suspension SystemUsing Skyhook Adaptive Neuro Active Force Control . Mechanical Systems andSignal Processing. 2009, 23(3):855–868
    18 S. Chantranuwathana, H. Peng. Adaptive Robust Force Control for VehicleActive Suspensions. Int. J. Adaptive Control and Signal Processing. 2009,23(3):855–868
    19 N. Yagiz, Y. Hacioglu, Y. Taskin. Fuzzy Sliding-mode Control of Active Sus-pensions . IEEE Trans. Industrial Electronics. 2004, 18:83–102
    20 H. Liu, K. Nonami, T. Hagiwara. Active Following Fuzzy Output FeedbackSliding Mode Control of Real-vehicle Semi-active Suspensions . J. of sound andvibration. 2008, 314(1–2):39–52
    21 H. Chen, Z. Y. Liu, P. Y. Sun. Application of Constrained H∞Control to Ac-tive Suspension System on Half-car Models . J. Dyn. Syst. Meas. Contr. 2005,127:345–354
    22 H. Du, J. Lam, K. Y. Sze. Non-fragile Output Feedback H∞Vehicle Suspen-sion Control Using Genetic Algorithm. Engineering Applications of ArtificialIntelligence. 2003, 16(7–8):667–680
    23 M. Yamashita, K. Fujimori, K. Hayakawa, et al. Application of H∞Control toActive Suspension Systems. Automatica. 1994, 30(11):1717–1729
    24 H. Gao, J. Lam, C. Wang. Multi-objiective Control of Vehicle Active Suspen-sion Systems via Load-dependent Controllers. J. of sound and vibration. 2006,290:645–675
    25 H. Chen, K. Guo. Constrained H∞Control of Active Suspensions: An LMIApproach. Automatica. 2005, 13(10):412–421
    26 W. C. Sun, H. J. Gao, P. Shi. An Input Delay Approach to Digital Control ofSuspension Systems. Chinese Control and Decision Conference. 2008:4728–4731
    27 H. Du, N. Zhang. H∞Control of Active Vehicle Suspensions with Actuator TimeDelay. J. of sound and vibration. 2007, 301:236–252
    28 M. M. Oblak, S. Lesnika, B. J. Butinar. Optimum Design of Stochastically Ex-cited Non-linear Dynamic Systems without Geometric Constraints. Int. J. Nu-merical Methods in Engineering. 2002, 53:2429–2443
    29 M. M. Fateh. Robust Impedance Control of a Hydraulic Suspension System. Int.J. Robust & Nonlinear Control. 2009
    30马宁,李长明.汽车悬架发展概述. Science & Techenology Information. 2007,34(10):221
    31宋永刚,张进秋,魏建.汽车悬架控制系统发展概述. Design and Research.2007
    32 D. Hrovat. Survey of Advanced Suspension Developments and Related OptimalControl Applications. Automatica. 1997, 33(10):1781–1817
    33宋晓琳.基于免疫算法的汽车主动悬架控制技术研究.湖南大学博士论文.2007
    34 I. Eski, S. Yidirim. Vibration Control of Vehicle Active Suspension System Usinga New Robust Neural Network Control System . Simulation Modelling Practiceand Theory. 2009, 17(5):778–793
    35 M. M. Fateh, S. S. Alavi. Impedance Control of an Active Suspension System .Mechatranics. 2009, 19(1):134–140
    36 S. M. Savaresi, C. Spelta. A Single-sensor Control Strategy for Semi-active Sus-pensions . IEEE Trans. Control Systems Technology. 2009, 17(1):143–152
    37 J. Marzbanrad, G. Ahmadi, H. Zohoor, et al. Stochastic Optimal Preview Controlof a Vehicle Suspension. J. of sound and vibration. 2004, 275:973–990
    38 A. Pestereva, L. Bergmanb, C. Tan. A Novel Approach to the Calculation ofPothole-induced Contact Forcesin Mdof Vehicle Models. J. of sound and vibra-tion. 2004, 275:127–149
    39 G. Litak, M. Borowiec, M. I. e. a. Friswell. Chaotic Vibration of a Quarter-car Model Excited by the Road Surface Profile . Communications in NonlinearScience and Numerical Simulation. 2008, 13(7):1781–1383
    40 C. Papageorgiou, M. C. Smith. Positive Real Synthesis Using Matrix Inequalitiesfor Mechanical Networks: Application to Vehicle Suspension . IEEE Trans.Control Systems Technology. 2006, 14(3):423–435
    41 H. Akcay, S. Turkay. In?uence of Tire Damping on Mixed H2/H∞Synthesis ofHalf Car Active Suspensions . J. of sound and vibration. 2009, 322(1–2):15–28
    42 A. Thompsona, B. Davis. Computation of the Rms State Variables and Con-trol Forces in a Half-car Model with Preview Active Suspension Using SpectralDecomposition Methods. J. of sound and vibration. 2005, 285:571–583
    43 Controller Parameterization for Disturbance Response Decoupling: Applicationto Vehicle Active Suspension Control
    44 N. Yagiz, Y. Hacioglu. Backstepping Control of a Vehicle with Active Suspen-sions. Control Engineering Practice. 2008, 16:1457–1467
    45余志生.汽车理论(第四版).清华大学出版社. 2008
    46 J. Meng. Frequency Shift Keyed Narrowband Interference Rejection: OptimalExponential Weighting Factor for the Rls Algorithm. IEE Proc. Part J: Vision,Image and Signal Processing. 2005, 152(3):268–274
    47 G. Calvagno, D. C. Munson. A Frequency-domain Approach to Interpolationfrom a Nonuniform Grid. Signal Processing. 1996, 52(1):1–21
    48 T. Iwasaki, G. Meinsma, M. Fu. Generalized S-procedure and Finite FrequencyKYP Lemma. Mathematical Problems in Engineering. 2000, 6:305–320
    49 T. Iwasaki, S. Hara. Generalized KYP Lemma: Unified Frequency DomainInequalities with Design Applications. IEEE Trans. Automat. Control. 2005,50(1):41–59
    50 T. Iwasaki, S. Hara, H. Yamauchi. Dynamical System Design from a Control Per-spective: Finite Frequency Positive-realness Approach. IEEE Trans. Automat.Control. 2003, 50(1):1337–1354
    51 S. Hara, T. Iwasaki. Sum-of-Squares Decomposition via Generalized KypLemma . IEEE Trans. Automat. Control. 2009, 54(5):1025–1029
    52 H. G. Hoang, H. D. Tuan, T. Q. Nguyen. Frequency-Selective Kyp Lemma, IirFilter, and Filter Bank Design . IEEE Trans. Signal Processing. 2009, 57(3):956–965
    53 B. Hencey, A. G. Alleyne. A KYP Lemma for LMI Regions. IEEE Trans. Au-tomat. Control. 2007, 52(10):1926–1930
    54 C. L. Dua, L. H. Xie, G. X. Guo, et al. A Generalized KYP Lemma BasedApproach for Disturbance Rejection in Data Storage Systems. Automatica. 2007,43(12):2112–2118
    55 X. N. Zhang, G. H. Yang. Control Synthesis via State Feedback with Finite Fre-quency Specifications for Time-delay Systems. Int. J. Control. 2009, 82(3):508–
    51656 H. Wang, G. H. Yang. A Finite Frequency Approach to Filter Design for Un-certain Discrete-time Systems. Int. J. Adaptive Control and Signal Processing.2008, 22:533–5550
    57 T. Chen, L. Qiu. H∞Design of General Multirate Sampled-data Control Systems.Automatica. 1994, 30(7):1139–1152
    58 T. Chen, B. Francis. H2-optimal Sampled-data Control. Automatica. 1991,36(4):387–397
    59 F. C. Liu, Y. Yao, F. H. He. Robust H-infinity Controller Design for Sampled-data Systems with Parametric Uncertainties . Journal of Systems Engineeringand Electronics. 2009, 20(2):371–378
    60 Z. Q. Ke, H. Logemann, R. Rebarber. A Sampled-data Servomechanism forStable Well-posed Systems . IEEE Trans. Automat. Control. 2009, 54(5):1123–1128
    61 T. Atsumi. Feedforward Control Using Sampled-data Polynomial for Track Seek-ing in Hard Disk Drives . IEEE Trans. Industrial Electronics. 2009, 56(5):1338–1346
    62 E. Fridman, A. Seuret, J. P. Richard. Robust Sampled-data Stabilization of LinearSystems: An Input Delay Approach. Automatica. 2004, 40(8):1441–1446
    63 E. Fridman, U. Shaked, V. Suplin. Input/output Delay Approach to RobustSampled-data H∞Control. Systems & Control Letters. 2005, 54:271–282
    64 V. Suplin, E. Fridman, U. Shaked. Sampled-data H∞Control and Filtering:Nonuniform Uncertain Sampling. Automatica. 2007, 43:1072–1083
    65俞立.鲁棒控制――线性矩阵不等式处理方法.清华大学出版社. 2002
    66 P. Apkarian, H. D. Tuan, J. Bernussou. Continuous-Time Analysis, Eigenstruc-ture Assignment, and H2 Synthesis with Enhanced Linear Matrix Inequalities(lmi) Characterizations. IEEE Trans. Automat. Control. 2001, 42(12):1941–1946
    67 J. Doyle, B. D. Francis, A. Tannenbaum. Feedback Control Theory. MacmillanPublishing Co. 1990
    68周克敏, J. Doyle, K. Glover.鲁棒与最优控制.国防工业出版社. 1999
    69郭尚来.随机控制.清华大学出版社. 2002
    70王广雄,何朕.控制系统设计.清华大学出版社. 2008
    71 T. Iwasaki, S. Hara. Feedback Control Synthesis of Multiple Frequency DomainSpecifications via Generalized KYP Lemma. Int. J. Robust & Nonlinear Control.2007, 17:415–434
    72 C. Scherer, P. Gahinet, M. Chilali. Multiobjective Output-feedback Control viaLMI Optimization. IEEE Trans. Automat. Control. 1997, 42(7):896–911
    73 J. C. Geromel, P. Colaneri, P. Bolzern. Dynamic Output Feedback Control ofSwitched Linear Systems. IEEE Trans. Automat. Control. 2008, 53(3):720–733
    74 P. N. Chen, D. Z. Cheng, Z. P. Jiang. A Constructive Approach to Local Stabiliza-tion of Nonlinear Systems by Dynamic Output Feedback. IEEE Trans. Automat.Control. 2006, 51(7):1166–1171
    75 Y. Y. Cao, Z. l. Lin, B. M. Chen. An Output Feedback H∞Controller Designfor Linear Systems Subject to Sensor Nonlinearities. IEEE Trans. Circuits andSystems (I). 2003, 50(7):914–921
    76 J. Chen, S. Hara, L. e. a. Qiu. Best Achievable Tracking Performance in Sampled-data Systems via Lti Controllers . IEEE Trans. Automat. Control. 2008, 53(11):2467–2479
    77 M. Fardad, M. R. Jovanovic, B. Bamieh. Frequency Analysis and Norms ofDistributed Spatially Periodic Systems . IEEE Trans. Automat. Control. 2008, 53(10):2266–2279
    78 X. R. Wang, B. A. Huang, T. W. Chen. Multirate Minimum Variance Control De-sign and Control Performance Assessment: A Data-driven Subspace Approach .IEEE Trans. Control Systems Technology. 2007, 15(1):65–74
    79 M. F. Sagfors, H. T. Toivonen, L. B. State-space Solution to the Periodic Mul-tirate H-infinity Control Problem: A Lifting Approach . IEEE Trans. Automat.Control. 2000, 45(12):2345–2350

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700