用户名: 密码: 验证码:
半电池电位法检测混凝土中钢筋锈蚀的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,混凝土结构的耐久性问题成为了结构工程学科研究的热点和重点,受到工程界的普遍关注和重视。钢筋锈蚀是耐久性研究中的核心问题,在使用期间对结构进行锈蚀检测、评估,不仅是工程建设安全的要求,也是结构寿命预测的一个重要环节。本文在半定量判断钢筋锈蚀的美国ASTM电位标准基础上,针对钢筋的宏观临界锈蚀,采用半电池电位法研究钢筋的临界锈蚀电位,试图将电位判断标准定量化,供实际工程检测参考。主要完成了以下工作:
     1)通过电化学加速锈蚀试验,从宏观和微观上对钢筋的临界锈蚀进行了研究。以宏观和微观的临界锈蚀特征为判断标准,研究了标准试件的临界锈蚀时刻及其概率分布;通过酸洗试验得到不同水灰比试件的锈蚀修正系数,进而得到随水灰比变化的临界锈蚀时刻。
     2)系统研究了盐分、水灰比、保护层厚度、湿度、混凝土表面状况等因素对电位的影响,从中选取主要因素,探讨它们对临界锈蚀电位的影响,提出不同保护层厚度、不同水灰比条件下的临界锈蚀电位。研究表明,电位变化量随氯离子变化量呈e指数函数变化;水灰比越大,电位负移越少;电位随保护层呈线性变化。
     3)对小梅沙海洋世界进行了现场调查,分析了构件的环境作用特点,检测了表演池、梁、柱等构件的氯离子含量、半电池电位。调查发现,部分梁、柱构件氯离子含量严重超过规范标准,锈蚀严重。对此提出有针对性的修复建议和防护措施,并结合国内外标准和暴露试验成果,给出不同环境和使用年限下建筑物的保护层取值,为滨海环境混凝土结构设计施工提供参考。
     4)调查得到深圳近海环境水下区、盐雾区、浪溅区、潮汐区工程构件的保护层厚度、混凝土强度、氯离子含量、电位,建立BP神经网络电位预测模型。研究表明,模型具有较好的预测效果。
In recent years, the durability of the concrete structure has become focus and hot in structural engineering discipline, and the republic of engineering generally give more and more interest and attention. The steel corrosion is the core issues in this durability problem. During the life time of the structure, corrosion detection and assessment are not only the construction security requirements, but also an important part of the life forecast. Based on the the potential ASTM standards which gives semi-quantitative judgement to steel corrosion, we carry out the semi-cell potential research for the macro-critical rusty steel bars. We try to quantify the potential testing criterion which is useful as reference in the actual project. Main achievement is as following:
     Firstly, through the macro-cutting experiment and micro-AC impedance test, we study the critical rust moment, and through pickling and weighing test, we get the corrosion time with different water/cement ratio. The results show that: in the electrochemical speedup corrosion trial, if the corrosive current keeps constant, there is a moment that the steel has a uniform rusty surface. Nyquist plans can well reflect the steel’s corrosion situation in the concrete. When the slope in high-frequency area reduces to 0, there is uniform thin rust in the steel’s surface. Critical rusty moment obeys the maximum distributing of standard I. Water/cement ratio has great impact on the critical moment.
     Secondly, discuss the impact of factors on the potential of rusty component systemically, and choose main factors for the study of corrosive potential. The results show that: potential changes increase with variety of chloride ion content in the first and remain unchanged in the end. The potential mainly depends on the resistance of concrete and steel’s corrosion condition. The bigger water/cement ratio, the smaller the concrete resistance, and the less negative shift the potential. Potential varies with the protective layer linearly. The water content of the concrete itself has great impact on potential, and the impact of sample’s surface is little.
     Thirdly, we carry out locale detection, and evaluate the steel corrosion conditions in the Ocean World. The results show that: because of poor environmental conditions, chloride ion content of some beams and columns are seriously more than normative standards. Some beams and columns component have severe corrosion, and the durability problem is outstanding. The wall of the performance pool is in good condition all the same.
     Finally, we also survey the protective layer thickness, concrete strength, the chloride ion content and potential of the projects in the underwater environment, saline spray area, waves splashing area or tidal area, and then establish BP neural network forecasting model on potential. The results show that the model has a good prediction.
引文
1 P.K.Mehta. Durability-critical issues for the future. Concrete International, Design & Construction, 1997,19(7):27~33
    2金伟良,赵羽习.混凝土结构耐久性研究的回顾与展望.浙江大学学报, 2002,36(4): 371~380
    3洪定海.混凝土中钢筋的腐蚀与保护.北京:中国铁道出版社. 1998.
    4冯乃谦,邢锋.高性能混凝土.北京:原子能出版社, 2000.
    5洪乃丰.防冰盐腐蚀与钢筋混凝土的耐久性.建筑技术, 2000, 26 (2 ):102~ 104
    6黄士元.混凝土的耐久性与混凝土结构的安全性.混凝土与水泥制品, 1996,27(1): 4~9
    7王文铮,王洋等.钢筋混凝土桥梁结构耐久性问题及对策.广州建筑, 2006, (1):11~14
    8张誉等.混凝土结构耐久性概论.上海:上海科学技术出版社. 2003
    9金伟良,吕清芳等.混凝土结构耐久性设计方法与寿命预测研究进展.建筑结构学报, 2007, 28(1): 7~13
    10柯伟.中国腐蚀调查报告.北京:化学工业出版社. 2003
    11邓冰,竺存宏.天津港高桩码头锈蚀损面板残余承载力试验及估算方法的研究.港工技术,1998(1):25~31
    12 Gowers K R, et al. Programmable linear polarization meter for determination of corrosion rate of reinforcement in concrete structures. British corrosion Journal, 1994,29(1):25~31
    13 A.S.T.M C-876 Standard Test Method for Half Cell Potentials of Reinforcing Steel in Concrete
    14 Paul Chess, et al. Corrosion Investigation a guide to half-cell mapping. Thomas Telford Services Ltd. 1996
    15 Millard S G, et al. Assessing the electrical resistivity of concrete structure for corrosion durability studies, 3rd Int. Symp. On Corrosion of concrete in Concrete Constructure, Wishaw, May 1990, Society of Chemical Industry, 1990
    16赵卓,等.实际化工混凝土结构的腐蚀检测.华北水利水电学院学报,2000,21(2):18~22
    17赵卓,等.受氯化物腐蚀钢筋混凝土结构的腐蚀检测与评价.建筑结构, 2000,30(12):20~22
    18李汝成,等.地质雷达在探测郑洛高速公路路基沉陷中的运用.河南交通科技, 1997(6):20~24
    19卫军,张晓玲,赵霄龙.混凝土结构耐久性的研究现状和发展方向.低温建筑技术,2003(2):1~5
    20小林丰治.混凝土中钢筋锈蚀的机理[J].混凝土与建筑构件, 1982,(1):46~50
    21张国学,宋建夏,刘晓航.钢筋锈蚀对钢筋混凝土构件粘结力的影响[J].工业建筑, 2000,(2):30
    22范颖芳,黄振国,等.受腐蚀钢筋混凝土构件中钢筋与混凝土粘结性能研究[J].工业建筑, 1999,(8):29
    23 Cabrera, J. G. Deterioration of concrete due to reinforcement steel corrosion, Cement and Concrete Composites, 18(1), 1996: 47~59
    24惠云玲.混凝土结构钢筋锈蚀耐久性损伤评估及寿命预测方法[J ] .工业建筑, 1997, 27(6) :19~22
    25陈艳华,石志飞.钢筋混凝土界面的疲劳损伤[J ].中国安全科学学报, 2003,13(9) :78~80
    26张伟平,等.混凝土中钢筋锈蚀的电化学检测方法.工业建筑,1998,28(12):21
    27 Bazant Z P. Physical Model for Steel Corrosion in Concrete Sea Structures-Theory. Journal of Structural Division, ASCE, 1979, 105(6):1137~1153
    28 Bazant Z P. Physical Model for Steel Corrosion in Concrete Sea Structures- Application. Journal of Structural Division, ASCE, 1979, 105(6):1155~1166
    29 Morinaga S. Prediction of service lives of reinforced concrete buildings based on the corrosion rate of reinforcing steel. Proceedings of Building Materials and Components, Brighton, UK, 7–9 November 1990:5~16.
    30 Wang XM, Zhao HY. The residual service life prediction of R.C. structures. In: Nagataki S et al., editors. Durability of building materials and components 6. E & FN Spon; 1993. p. 1107~14.
    31肖从真.混凝土中钢筋腐蚀的机理研究及数论模拟方法:[学位论文].北京:清华大学,1995
    32牛荻涛,王庆霖,王林科.锈蚀开裂前混凝土中钢筋锈蚀量的预测模型.工业建筑,1996(4)
    33牛荻涛,王庆霖,王林科.锈蚀开裂后混凝土中钢筋锈蚀量的预测.工业建筑,1996(4)
    34邸小坛,周燕.大气环境下钢筋锈蚀规律的研究.见:第四届全国混凝土耐久性学术交流会论文集,苏州,1996
    35惠云玲.混凝土结构中钢筋锈蚀程度评估及预测试验研究.见:第四届全国混凝土耐久性学术交流会论文集,苏州,1996
    36 O. Kayali, B. Zhu, Corrosion performance of medium-strength and silica fume high-strength reinforced concrete in a chloride solution, Cement and Concrete Composites, 2005 (27), 117~124.
    37 Hamid R. Soleymani, Ismail E. Mohamed, Comparing corrosion measurement methods to assess the corrosion activity of laboratory OPC and HPC concrete specimens, Cement and Concrete Research, 2004(34), 2037~2044.
    38 W.Morris, A.Vico, M.Vazquez, S.R.Sanchez, Corrosion of reinforcing steel evaluated by means of concrete resistivity measurements, Corrosion Science, 2002(44), 81~99
    39 L.Holloway, K. Nairn, M. Forsyth, Concentration monitoring and performance of a migratory corrosion inhibitor in steel-reinforced concrete, Cement and Concrete Research, 2004 (34), 1435~1440.
    40候文涛,杜爱玲.半电池点位在水工钢筋混凝土中的应用探讨.山东工业大学学报,1994,24(1):37~44
    41 Gowers K R,Millard S G.Programmable Linear Polarisation Meter for Determination of Corrosion Rate of Reinforcement in Concrete Structures.Br.Corros.J,1994
    42 Glass G K, et al. Obtaining impedance information on the steel_concrete interface [J]. Corrosion, 1998,54(11):887.
    43 Ran Huang, Jiang-Jhy Chang, Jiann-Kuo wu, Correlation between corrosion potential and polarization resistance of rebar in concrete, Materials Letters, 1996(28), 445~450.
    44霍元.海砂型氯离子的扩散机理及其对钢筋锈蚀性能的影响:[学位论文].深圳:深圳大学,2007:52
    45 W.S.Mcculloch, W.Pitts. A logical calculus of the ideas immanent in Nervous Activity, Bull Math. Biophysics, 1943, 5, 115~133
    46 D.O.Gebb. The organization of behavior, Wiley, New York, 1949
    47 F.Rosenblatt. Principles of neurodynamicas, Spartam, 1961
    48 B.Widrow and M.E.Hoff. Adaptive switching circuits, IREWSCON Conven- tion Record, New York, 1960, pp96~104
    49 J.J.Hopfield. Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. 79, 1982, 2554~2558
    50 D.E.Rumelhart and J.L.Mcclelland. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, I, &II, MIT press. Cambridge MA, 1986
    51沈世镒.神经网络系统理论及其应用,北京:科学出版社,1998,11
    52于晟.基于人工神经网络混凝土孔结构与强度关系研究:[学位论文].杭州:浙江大学,2006
    53李志成,孙莉.人工神经网络在人工砂粉煤灰混凝土配合比设计中的用.华北水利水电学院学报,2005,26(4):21~23
    54史长城,霍洪媛.混凝土碳化深度的人工神经网络分析与预测.河南科技,2007,25(2):292~295
    55陈海斌,牛荻涛.应用人工神经网络技术评估混凝土中钢筋的锈蚀量.工业建筑,1999,29(2):51~55
    56赵少伟,王铁成.基于BP人工神经网络的人工海水侵蚀对混凝土强度的试验研究.海洋技术,2007,26(4):115~117
    57李文勇,安志文.盐害腐蚀对混凝土强度影响的人工神经网络研究.河北建筑工程学院学报,2007,25(3):35~36
    58范颖芳,周晶.人工神经网络在受腐蚀钢筋混凝土结构工程中的运用.四川建筑科学研究,2004,30(1):19~22
    59 Michael Thomas, Chloride thresholds in marine concrete, C.C.R., 1996, 26(4), 513~519
    60 Wolfgang Breit, Aachen, Corrosion of steel in concrete-The question of corrosion initiated by the critical chloride content, Concrete Precasting Plant and Technology, 1998, 11, 37~45
    61史美伦,张雄.微粒矿渣粉掺合料对混凝土中钢筋锈蚀影响的电化学研究.硅酸盐学报,1998,26(6):683~688
    62邱富荣,E.Escalante.混凝土中钢筋腐蚀的交流阻抗法测量.中国腐蚀与防护学报,1989,9(3):214~219
    63沈德建,李骁春.混凝土中钢筋锈蚀电化学分析与室内快速锈蚀试验技术.建筑技术开发,2003,30(2):36
    64李岩.氯离子在混凝土中的渗透性能与钢筋腐蚀临界浓度的试验研究: [学位论文].南京:南京水利科学研究院,2003:45~47
    65罗建群.水工建筑物钢筋锈蚀检测方法的探讨.山东工业大学学报,1991,21(4):35~41
    66王杏卿.电力设备的锈蚀与防护.水利电力出版社,1988,90~91
    67朱晓娥.线性极化法检测混凝土中钢筋锈蚀的实验研究:[学位论文].汕头:汕头大学,2006:71
    68侯文涛,杜爱玲.半电池法在水工钢筋混凝土中的应用讨论.山东工业大学学报,1994,24(1):42
    69梁松,杨医博.关于混凝土中氯离子限值和评价方法的探讨.工业建筑2006,36:880~883
    70王青,徐港.氯盐环境下混凝土结构的防护设计措施.混凝土,2007,7:96~97
    71张宝兰,卫淑珊.华南海港钢筋混凝土暴露十年试验.水运工程,1999,3:6~13
    72刘军,丁铸.滨海气候下混凝土结构腐蚀环境特征研究.广东土木与建筑,2007,9:23~25
    73杨医博,梁松,莫海鸿,等.抗氯盐高性能混凝土技术手册[M].北京:中国水利水电出版社,2006
    74程云虹,刘斌.基于BP网络的混凝土碳化研究[J].东北大学学报(自然科学版),2004,12:55~58
    75韩立群.人工神经网络教程.北京:北京邮电大学出版社. 2006
    76董长虹. Matlab神经网络与应用.北京:国防工业出版社. 2005
    77王宁会,刘敏.神经网络预测技术的研究进展.控制工程,2003,10(1):
    15~17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700