用户名: 密码: 验证码:
betA基因的异源表达提高了棉花耐盐和耐低温能力
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘氨酸甜菜碱(GB)是一种重要的渗透保护物质,在低温、高盐和干旱等逆境胁迫下,许多植物积累甘氨酸甜菜碱作为渗透保护物质以维持细胞正常的渗透压,稳定酶和蛋白复合物的结构和功能,保持膜的完整性。来自大肠杆菌的betA基因编码的胆碱脱氢酶(CDH)兼具有胆碱单氧化物酶和甜菜碱醛脱氢酶的功能,转移单一的betA基因即可赋予植物积累甘氨酸甜菜碱的能力。
     生产中低温和盐渍是限制棉花产量和质量的重要因素之一。提高棉花的耐盐、耐低温能力,对于提高棉花产量,拓宽植棉区域具有重要意义。工作以本实验室得到的转betA基因鲁棉研19的T3代棉花为材料,以鲁棉研19为野生型对照,通过对转基因植株后代的耐盐和耐低温特性进行了分析,结果表明转基因棉花的耐盐和耐低温能力都有明显提高。
     betA基因的表达提高了转基因棉花叶片中GB的累积量
     betA基因的过表达显著提高了转基棉花叶片中GB的含量。利用核磁共振法测定了转基因株系LM1、LM2、LM3、LM4及野生型对照鲁棉研19植株叶片中GB的含量。在正常生长状态下,鲁棉研19植株叶片中GB含量约为99.29μmolg~(-1)DW,转基因株系GB的含量在125.98-214.34μmolg~(-1)DW之间。250mMNaCl处理10天后,棉花植株叶片的GB含量大幅提高,株系LM1、LM2、LM3和LM4植株叶片甜菜碱含量分别为321.06、357.32、355.51和276.09μmolg~(-1)DW,显著高于对照株系176.00μmolg~(-1)DW的GB含量。5℃低温处理24h后,株系LM1、LM2、LM3和LM4植株的GB含量分别为170.78、205.93、248.21和189.46μmolg~(-1)DW,分别是野生型对照109.37μmolg~(-1)DW GB含量的1.56、1.88、2.27和1.73倍,转基因棉花植株叶片的GB含量显著高于野生型对照植株。转基因株系中甜菜碱含量的升高可能是由于高盐、低温胁迫后betA基因的表达水平增强引起的。
     转betA基因棉花的耐盐性分析
     在250mM NaCl浇灌条件下,转基因株系LM1、LM2、LM3、LM4第9天的种子萌发率分别为52.04%、66.04%、60.44%和42.40%,均显著高于野生型28.28%的萌发率。株系LM2、LM3生物量也显著高于野生型对照。250mM NaCl浇灌21天后,野生型对照植株叶片的相对含水量由80.79%降至48.54%,株系LM1、LM2、LM3、LM4叶片的相对含水量分别为62.90%、64.93%、64.44%和63.53%,转基因植株叶片失水速度比对照缓慢。转基因棉花叶片中渗透保护物质可溶性糖、游离氨基酸含量均高于野生型对照,株系LM1、LM2、LM3、LM4的细胞溶质势较野生型对照分别低8.86%、13.89%、3.50%和8.61%,即转基因棉花细胞中积累了更多的溶质,增强了细胞吸取水分和持水能力,从而有利于植株保持正常形态和细胞膨压。株系LM2、LM3细胞膜离子渗漏率分别比野生型对照植株低23.08%和23.56%,叶片丙二醛含量也比野生型对照植株低38.72%和36.03%,说明转基因植株在盐胁迫条件下细胞膜损伤和膜脂过氧化程度都较轻。转基因株系LM2、LM3的净光合速率、气孔导度和蒸腾速率都明显高于野生型对照,转基因棉花的光合作用系统受到渗透胁迫的影响较野生型对照为轻。在含盐量为0.45%的盐碱地中,转基因株系LM2、LM3的单株籽棉产量远远高于野生型对照,这为培育耐盐棉花新品种提供了优良材料,对于棉花育种具有重要意义。
     转betA基因棉花的耐低温性分析
     在15℃条件下,转基因株系LM1、LM2、LM3、LM4第13天的种子萌发率分别为67.33%、78.20%、70.11%和74.25%,均显著高于野生型53.24%的萌发率。5℃低温处理24h,野生型对照植株叶片的相对含水量由87.94%降至53.43%,转基因株系LM3的叶片相对含水量为66.28%,显著高于对照株系,转基因植株叶片持水能力比对照强。转基因株系LM1、LM2、LM3、LM4的离子渗漏率分别比对野生型对照低22.59%、37.95%、40.28%、23.11%,其中株系LM2、LM3的细胞膜离子渗漏率显著低于野生型对照植株,叶片丙二醛含量也比野生型对照植株低32.96%和39.65%,说明低温条件对转基因株系棉花叶片细胞膜的损害相对较轻,耐低温能力较强。株系LM2、LM3的细胞保护酶SOD的活性比野生型对照分别高4.41%和6.35%,说明转基因植株在低温胁迫条件下,体内保护酶活性处于较高水平,具有较强清除体内自由基的能力。低温胁迫后转基因株系的净光合速率、气孔导度、胞间CO_2浓度和蒸腾速率都明显高于野生型对照,转基因株系LM2、LM3的净光合速率分别比野生型对照植株高13.81%和31.61%,转基因植株与野生型对照相比,其光合系统受低温的伤害较轻。
     因此,本研究表明来自大肠杆菌的betA基因在棉花中的异源表达可以提高转基因棉花植株中甘氨酸甜菜碱的含量,转基因棉花LM2、LM3的抗逆性有不同程度的提高,为棉花抗逆育种提供了新材料。
Glycinebetaine(GB)is important one kind of compatible osmolyte.Some plant accumulated the osmoprotectant GB to maintain the cell normal turgor,the structure and function of enzyme,protein complex,and the integrity of membrane responding the stress such as low temperature,salt and drought.The betA gene from E.coli. encodes chroline dehydrogenase(CDH)which has both the function of Choline Monooxygenase(CMO)and betaine aldehy dedehydrogenase(BADH). Transformation of the single gene betA can endow the transgenic plants the capability of accumulating GB.
     Low temperature and soil salinization are important factors affecting the quality and yield of cotton.There is important significance to improve the salt and low temperature tolerance of cotton for increasing the yield and plant area of cotton.The tolerance to salt and low temperature stress of four T3 progeny of transgenic lines from Lumianyanl9 was investigated.The result shows that the tolerance of transgenic plants improved significantly.
     The expression of betA increased the accumulation of GB in transgenic cotton
     The expression of betA increases the level of GB in transgenic cotton leaves significantly.The level of GB in the leaves of transgenic lines LM1,LM2,LM3,LM4 and wild-type Lumianyanl9 are detected by NMR method.The concentration of GB in the leaves of wild-type was 99.29μmolg~(-1)DW,the level of GB in the transgenic lines were between 125.98-214.34μmolg~(-1)DW under normal growing condition.After ten days treated by 250mM NaCl,the concentration of GB increased significantly,the four transgenic lines accumulated 321.06,357.32,355.51 and 276.09μmolg~(-1)DW respectively,significantly higher levels of GB than the wild-type plant with 176.00μmolg~(-1)DW GB.After 24 hours' treatment with 5℃,the GB content in transgenic lines LM1,LM2,LM3 and LM4 reached 170.78,205.93,248.21 and 189.46μmolg~(-1)DW,they were 1.56,1.88,2.27 and 1.73 times compared to that in wild-type plants.It is possible that significant increase of the level of GB in transgenic lines resulted from the enhanced expression of betA under the stress of salt or low temperature.
     Analysis of salt tolerance of betA-expressing cotton
     The germination rates of the transgenic lines LM1,LM2,LM3 and LM4 treated by 250mM NaCl for 9 days are 52.04%,66.04%,60.44%and 42.40%respectively, each of which is significantly higher than that of the wild-type Lumianyan19.The biomass of the lines LM2,LM3 is significantly higher than that of the wild-type.After 21 days salt stress under 250mMNaCl,the relative water content of the wild-type plants reduced from 80.79%to 48.54%,whereas that of the four transgenic lines are 62.90%,64.93%,64.44%and 63.53%,the water loss rates of the transgenic lines more slowly than that of the wild-type plants.The content of other osmoprotectant such as soluble sugar,free amino acids in the leaves of the transgenic cotton are obvious higher than those in wild-type.The solute potential of the lines LM1,LM2, LM3,LM4 is 8.86%,13.89%,3.50%and 8.61%lower than that of the wild-type.The results indicated that more solutes were accumulated in transgenic plants to enable cells to absorb more water and to maintain cell normal shape and turgor under stress. The cell membrane ion leakage,the content of malondialdehyde of lines LM2,LM3 is 23.08%,23.56%and 38.72%,36.03%lower than that of the wild-type respectively, which suggested less membrane damage and lipid peroxidation occurred in these transgenic lines.After osmotic stress,net photosynthesis,stomatal conductance and transpiration rate of the four transgenic lines were significantly higher than those of wild-type,the effect to the Photosynthesis System of transgenic cottons is less than that of the wild-type.The seed cotton yield per plant of the lines LM2,LM3 is significantly higher than that of the wild-type on the salinized land(salt content 0.45%),which were of great value in cotton breeding and production.
     Analysis of low temperature tolerance of betA-expressing cotton
     The germination rates of the lines LM1,LM2,LM3 and LM4 at the 13~(th)day after seeding at 15℃condition are 67.33%,78.20%,70.11%and 74.25%,each of which is significantly higher than 53.24%which is the germination rate of the wild-type Lumianyanl9.After 24h low temperature treatment at 5℃,the relative water content of the wild-type plants reduced from 87.94%to 53.43%,whereas that of the transgenic line LM3 is 66.28%,which is significantly higher than that of the wild-type plants,the water-retaining capability of the transgenic lines leaves is better than that of the wild-type plants.The cell membrane ion leakage of the four transgenic lines LM1,LM2,LM3,LM4 is 22.59%,37.95%,40.28%and 23.11%respectively, which is lower than that of the wild-type,the content of malondialdehyde of the transgenic lines LM2,LM3 is 32.96%and 39.65%,which is less than that of the wild-type.The results suggested that less membrane damage occurred in these transgenic lines which have stronger low temperature tolerance.The SOD activity in these transgenic lines is also higher than that of wild-type plants under stress.The results implied that the transgenic plant has strong activity of cell protective enzyme, powerful ability to scavenging free radicals under low temperature stress.After low temperature stress,net photosynthesis,stomatal conductance,intercellular CO_2 concentration and transpiration rate of the four transgenic lines were significantly higher than those of wild-type plants,the net photosynthesis of the LM2 and LM3 is 13.81%and 31.61%higher than that of the wild-type plants,the damage to the Photosynthesis System of transgenic cottons by low temperature stress is less than that of the wild-type.
     The above physiological analysis of cotton plants transformed with betA gene demonstrated that a proportion of the transgenic lines(LM2,LM3)accumulated higher levels of glycinebetaine and acquired significantly higher tolerance to salt and low temperature stresses.In addition,the transgenic lines with improved stress tolerance provided valuable cotton materials for cotton stress tolerance breeding.
引文
1.http://210.75.212.31/中国棉花信息网.
    2.赵可夫,范海,宋杰(2002)中国盐生植物的种类、类型、植被及其经济潜势[A].刘小京,刘孟雨,盐生植物利用与区域农业可持续发展[C].北京气象出版社,1-9.
    3.张锐,王远,孟志刚,孙国清,郭三堆(2007)国产转基因抗虫棉研究回顾与展望[J].中国农业科技导报,9(4):32-42.
    4.周桃华(1995)NaCl胁迫对棉子萌发及幼苗生长的影响[J].中国棉花,22(5):11-12.
    5.陈国安(1992)钠对棉花生长及钾钠吸收的影响[J].土壤,24(4):201-204.
    6.沈法富(1991)棉花耐盐碱生理指标研究[J].中国棉花,18(4):9-10.
    7.郭岩,张莉,肖岗,曹守云,谷冬梅,田文忠,陈受宜(1997)甜菜碱醛脱氢酶基因在水稻中的表达及转基因植株的耐盐性研究[J].中国科学(C 辑),27(2):151-155.
    8.刘岩,王国英,刘俊君,彭学贤,谢友菊,戴景瑞,郭世伟,张福锁(1998)大肠杆菌gutD基因转入玉米及耐盐转基因植株的获得[J].中国科学(C辑),28:542-547.
    9.Roxas VP,Lodhi SA,Garrett DK,Mahan JR,AHen RD(2000)Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase[J].Plant & cell physiology,41(11):1229-1234.
    10.Xue ZY,Zhi DY,Xue GP,Zhang H,Zhao YX,Xia GM(2004)Ehanced salt tolerance of transgenic wheat(Tritivumaestivnm L.)expressing a vacuolar Na~+/H~+ antiporter gene with improved grain yields in saline soils in the field and reduced level of leaf Na~+[J].Plant science,167(4):859-899.
    11.Yin XY,Yang AF,Zhang KW,Zhang JR(2004)Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1gene[J].Acta Botanica Sinica,46:854-861.
    12.Kumar S,Dhingra A,Daniell H(2004)Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells,roots,and leaves confers enhanced salt tolerance[J].Plant Physiology,136(1):2843-2854.
    13.Aida Hmida,Sayari Radhia,Gargouri-Bouzid,Amira Bidani(2005)Overexpression of Δ1-pyrroline-5-carboxylate synthetase increase praline production and confers salt toleranle in transgenic potato plants[J].Plant Science,1698(4):746-752.
    14.Mckersie BD,Muenaghan J,Jones K S(2000)Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance[J].Plant Physiology,122:1427-1438.
    15.Orlova IV,Serebriiskaya TS,Popov V,Merkulova N,Nosov AM,Trunova TI,Tsydendambaev VD,Los DA(2003)Transformation of tobacco with a gene for the thermophilic acyllipid desaturase enhances the chilling to lerance of plants[J].Plant & cellphysiology,44:447-450.
    16.Oh SJ,Song SI,Kim YS,Jang HJ,Kim SY,Kim M,Kim YK,Nahm BH,Kim JK(2005)Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth[J].Plant Physiology,138(1):341-351.
    17.Gilmour SJ,Sebolt AM,Salazar MP,Everard JD,Thomashow MF(2000)Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation[J].Plant Physiology,124(4):1854-1865.
    18.Su J,Hirji R,Zhang L,He C,Selvaraj G,Wu R(2006)Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress protectant glycine betaine[J].Journal of Experimental Botany,5(75):1129-1135.
    19.Wu W,Su Q,Xia XY,Wang Y,Luan YS,An LJ(2008)The Suaeda liaotungensis kitag betaine aldehyde dehydrogenase gene improves salt tolerance of transgenic maize mediated with minimum linear length of DNA fragment[J].Euphytica,159:17-25.
    20.Holmberg N,Bulow L(1998)Improving stress tolerance in plants by gene transfer[J].Trends in Plant Science,3(2):61-66.
    21.闫新甫(2003)转基因植物对全球繁荣的重要性[A].闫新甫,李润植.转基因植物(第一版)[C],科学出版社,中国北京,3-35.
    22.James C(2003)Global review of commercialized transgenic crops:2003.ISAAA Briefs[R]No.30-2003,The international service for the acquisition of agri-biotech applications(ISAAA):Ithaca,NY,USA.
    23.James C(2006)Global status of commercialized biotech/GM crops:2005[R].New York,USA.The international service for the acquisition of agri-biotech applications(ISAAA).http://www.isaaa.org.
    24.武丽辉(2007)2006年全球转基因作物种植面积突破1亿公顷[J].农药科学与管理,25(4):53.
    25.James C(2007)Executive Summary Global Status of Commercialized Biotech/GM Crops:2007[R].New York,USA.The international service for the acquisition of agri-biotech applications(ISAAA).
    26.秦永华,乔志新,刘进元(2007)转基因技术在棉花育种上的应用[J].棉花学报,19(6):482-488.
    27.张慧军,董合忠,石跃进,陈受宜,朱永红(2007)山菠菜胆碱单加氧酶基因对棉花的遗传转化和耐盐性表达[J].作物学报,33(7):1073-1078.
    28.沈法富,于元杰,尹承佾(1995)抗盐碱罗布麻DNA导入棉花的研究[J].棉花学报,7(1):18-21.
    29.P Payton,RD Allen,N Trolinder,A Scott Holaday(1997)Over-express of chloroplast targeted Mn superoxide dismutase in cotton(Gossypium hirsutum L.cv Coker312)does not alter the reduction of photosynthsis after short exposures to low temperature and high intensity[J].Photosynthesis Research,52(3):233-244.
    30.吕素莲,尹小燕,张可炜,张举仁(2004)农杆菌介导的棉花茎尖遗传转化及转betA植株的产生[J].高技术通讯,11:20-25.
    31.He C,Yan J,Shen G,Fu L,Holaday AS,Auld D,Blumwald E,Zhang H (2005)Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field[J].Plant & cell physiology,46(11):1848-1854.
    32.Sulian Lv,Aifang Yang,Kewei Zhang,Lei Wang,Juren Zhang(2007)Increase of glycinebetaine synthesis improves drought tolerance in cotton[J].Molecular Breeding,20:233-248.
    33.Wang W,Vinocur B,Altman A(2003)Plant responses to drought,salinity and extreme temperatures:towards genetic engineering for stress tolerance [J].Planta,218:1-14.
    34.江福英,李延,翁伯琦(2002)植物低温胁迫及抗性生理[J].福建农业学报,17(3):190-195.
    35.李美茹,刘鸿先,王以柔(2000)植物抗冷分子生物学研究进展[J].热带植物学报,(1):70-80.
    36.刘巍,于志水,纪纯阳,金红,赵继梅(2008)植物盐胁迫研究进展[J].防护林科技,82(1):57-61.
    37.陈洁,林栖凤(2003)植物耐盐生理及耐盐机理研究进展[J].海南大学学报自然科学版,21(2):177-182.
    38.高媛,齐晓花,杨景华,张明方(2007)高等植物对低温胁迫的响应研究[J].北方园艺,(10):58-61.
    39.杨凤仙,董俊梅,杨晓霞(2001)低温胁迫下棉叶叶绿体、液胞超微结构的变化[J].山西农业大学学报,21(2):116-117.
    40.张素勤,程智慧,耿广东(2007)低温胁迫对不同耐寒性茄子品种光合特性的影响[J].安徽农业科学,35(27):8435-8437.
    41.赵昕,吴雨霞,赵敏桂,何建新(2007)NaCl胁迫对盐芥和拟南芥光合作用的影响[J].植物学通报,24(2):154-160.
    42.郭书奎,赵可夫(2001)NaCl胁迫抑制幼苗光合作用的可能机理[J].植物学通报,27(6):461-466.
    43.惠红霞,许兴,李守明(2002)宁夏干旱地区盐胁迫下枸杞光合生理特 性及耐盐性研究[J].中国农学通报,5(18):29-34.
    44.许祥明,叶和春,李国凤(2000)植物抗盐机理的研究进展[J].应用与环境生物学报,6(4):379-387.
    45.朱新广,张其德(1999)NaCl对光合作用影响的研究进展[J].植物学通报,16:332-338.
    46.李新梅,孙丙耀,谈建中(2006)甜菜碱与植物抗逆性关系的研究进展[J].农业科学研究,27(3):66-70.
    47.Kavi Kishor PB,Hong Z,Miao G-H,Hu C-AA,Verma DPS(1995)Overexpression of[delta]-Pyrroline-5-Carboxylate Synthetase increases proline production and confers osmotolerance in transgenicplants[J].Plant Physiology,108:1387-1394.
    48.Hong Z,Lakkineni K,Zhang Z,Verma DPS(2000)Removal of feedback inhibition of[delta]-pyrroline-5-carboxylate synthetase(P5CS)results in increased proline accumulation and protection of plants from osmotic stress [J].Plant Physiolgy,122:1129-1136.
    49.Nanjo T,Kobayashi M,Yoshiba Y,Kakubari Y,Yamaguehi-Shinozaki K,Shinozaki K(1999)Antisense suppression of prolinedegradation improves tolerance to freezing and salinity in Arabidopsis thaliana[J].FEBS Letters,461(3):205-210.
    50.Garg AK,Kim J-K,Owens TG,Ranwala AP,Choi YD,Kochian LV,Wu RJ(2002)Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses[J].Proceedings of the National Academy of Sciences of the United States of America,99:15898-15903.
    51.Zhang SZ,YBP,F CL,T HL(2005)Genetic Transformation of Tobacco with the Trehalose Synthase Gene from Grifola frondosa Fr.Enhances the Resistance to Drought and salt in Tobacco[J].Journal of Integrative Plant Biology,47:579-587.
    52.王慧中(2000)转mtlD/gutD双价基因水稻的耐盐性[J].科学通报,45(7):724-729.
    53.Borovskii GB,Stupnikova IV,Antipina AI,Voinikov VK(2000) Accumulation of dehydrin-like proteins in the mitochondria of cold-treated plants[J].Journal of Plant Physiology,156:797-800.
    54.Franeo OL,RMelo F(2000)Osmoprotectants-A plant strategy in response to osmotic stress[J].Russian Journal of Plant Physiology,47:137-144.
    55.James F.Guenther,Nouth Chanmanivone,Manker P.Galetovie,Ian S.Wallace,Jennifer A.Cobb,and Daniel M.Roberts(2003)Phosphorylation of Soybean Nodulin 26 on serine 262 Enhances Water Permeability and Is Regulated Developmentally and by Osmotic Signals[J].Plant Cell,15:981-991.
    56.林善枝,张志毅,林元震(2004)植物抗冻蛋白及抗冻性分子改良[J].植物生理与分子生物学学报,30(3):251-260.
    57.丁国华,秦智伟,周秀艳(2003)植物低温诱导蛋白和诱导基因研究新进展[J].中国农学通报,19(6):33-39.
    58.Huang B,Longguo Jin,JinYuan Liu(2007)Identification and characterization of the novel gene GhDBP2 encoding a DRE-binding protein from cotton(Gossypium hirsutum)[J].Journal of Plant Physiology,10:10-16.
    59.Kranz H,Scholtz K,Weisshaar B(2000)c-MYB oncogene-like genes encoding three MYB repeats occure in all major plant lineages[J].The Plant Journal,21:231-235.
    60.Lee H,Xiong L,Gong Z,Ishitani M,Stevenson B,Zhu JK(2001)The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning[J].Genes & development,15:912-924.
    61.Viswanathan C,Masaru O,Siddhartha K,Byeong H L,Xu H H,Manu A,Jian K Z(2003)ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J].Genes & development,17:1043-1054.
    62.Riechmann JL,Heard J,Martin G,Reuber L,Jiang CZ,Keddie J,Adam L,Pineda O,Ratcliffe OJ,Samaha RR,Creelman R,Pilgrim M,Broun P,Zhang JZ,Ghandehari D,Sherman BK,Yu GL(2000) Arabidopsis transcription factors:Genome-wide comparative analysis among eukaryotes[J].Science,290:2105-2110.
    63.Apel K,Hirt H(2004)Reactive oxygen species:Metabolism,oxidative stress,and signal transduction[J].Annual Review of Plant Biology,55:373-379.
    64.Asada K(1999)The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons[J].Annual Review of Plant Physiology and Plant Molecular Biology,50:601-639.
    65.Gupta AS,Heinen JL,Holaday AS,Burke JJ,Allen RD(1993)Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase[J].Proceedings of the National Academy of Sciences of the United States of America,90(4):1629-1633.
    66.Murata N,Los D A(1997)Membrane fluidity and temperature perception [J].Plant Physiology,1997(115):875-879.
    67.Peter L.Steponkus,Matsuo Uemura,Raymond A.Joseph,Sarah J.Gilmour,Michael F.Thomashow(1998)Mode of action of the COR15αgene on the freezing tolerance of Arabidopsis thaliana[J].Proceedings of the National Academy of Sciences of the United States of America,95(24):14570-14575.
    68.Cyril J,Powell GL,Duncan RR,Baied WV(2002)Changes in membrane polar lipid fatty acids of seashore paspalum in response to low temperature exposure[J].Crop Science,42:2031-2037.
    69.王凭青,吴明生,王远亮,朱久进(2003)植物抗寒基因工程研究最新进展[J].重庆大学学报,26(7):81-85.
    70.Rhodes D,Hanson AD(1993)Quatemary ammonium and tertiary sulfonium compounds in higher plants[J].Review of Plant Physiology and Plant Molecular Biology,44:357-384.
    71.Grumet R,Hanson AD(1986)Genetic evidence for an osmoregulatory function of glycinebetaine accumulation in barley[J].Australian Journl of Plant Physiology,18:317-327.
    72.Saneoka H,Nagasaka C,Hahn DT,Yang WJ,Premachandra GS,Joly RJ,Rhodes D(1995)Salt tolerance of glycinebetaine-deficient and -containing maize lines[J].Plant Physiology,107(2):631-638.
    73.司怀军,张宁,王蒂(2007)转甜菜碱醛脱氢酶基因提高烟草抗旱及耐盐性[J].作物学报,33(8):1335-1339.
    74.Chen WP,Li PH,Chen THH(2000)Glycinebetaine increases chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays L[J].Plant,cell & environment,23:609-618.
    75.Kenta Shirasawa,Tomoko Takabe,Tetsuko Takabe Sachie Kishitani (2006)Accumulation of Glycinebetaine in Rice Plants that Overexpress Choline Monooxygenase from Spinach and Evaluation of their Tolerance to Abiotic Stress[J].Annals of Botany,98:565-571.
    76.Gorham J(1995)Betaines in higher plants-biosynthesis and role in stress metabolism[A].In Wallsgroves RM(ed.),Amino Acids and Their Derivatives in Higher Plants[C].Cambridge University Press,171-203.
    77.Papageorgiou GC,Murata N(1995)The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem Ⅱ complex[J].Photosynthesis Research,44:243-252.
    78.Demiral T,Turkan I(2004)Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment[J].Journl of Plant Physiology,161:1089-1100.
    79.杨铮,钟鸣,张丽(2006)甜菜碱合成途径及其在基因工程育种中的应用[J].分子植物育种,4(3):67-72.
    80.Rajendrakumar CS,Suryanarayana T,Reddy AR(1997)DNA helix destabilization by proline and betaine:possible role in the salinity tolerance process[J],FEBS Letters,410(2/3):201-205.
    81.Chen THH,Murata N(2002)Enhancement of tolerance to abiotic stress by metabolic engineering of betaines and other compatible solutes[J].Current opinion in plant biology,5:250-257.
    82.McNeil SD,Nuccio ML,Hanson AD(1999)Betaines and related osmoprotectants:targets for metabolic engineering of stress resistance[J].Plant Physiology,120:945-949.
    83.Weretilnyk EA,Bednarek S,McCue KF,Rhodes D,Hanson AD(1989)Comparative biochemical and immunological studies of the glycine betaine synthesis pathway in diverse families of dicotyledons[J].Planta,178:342-352.
    84.Akamoto A(2000)Genetic engineering of biosynthesis of glycinebetaine enhances tolerance to various stresses.In plant tolerance to Abiotic Stress in Agriculture:Role of Genetic Engineering(Vol.83)(Cherry J H,et al.eds).Kluwer Academic Publishers,95-104.
    85.Weretilnyk EA,Hanson AD(1990)Molecular cloning of a plant betaine-aldehyde dehydrogenase,an enzyme implicated in adaptation to salinity and drought[J].Proceedings of the National Academy of Sciences of the United States of America,87(7):2745-2749.
    86.MeCue KF,Hanson AD(1992)Salt-inducible betaine aldehyde dehydrogenase from sugarbeet:cDNA cloning and expression[J].Plant Molecular Biology,18(1):1-11.
    87.Wood AJ,Saneoka H,Rhodes D,Joly RJ,Goldsbrough PB(1996)Betaine aldehyde dehydrogenase in sorghum[J].Plant Physiology,110(4):1301-1308.
    88.Nakamura T,Yokota S,Muramoto Y,Tsutsui K,Oguri Y,Fukui K,Takabe T(1997)Expression of a betaine aldehyde dehydrogenase gene in rice,a glycinebetaine nonaccumulator,and possible localization of its protein in peroxisomes[J].The Plant Journal,11(5):1115-1120.
    89.Ishitani M,Nakamura T,Han SY,Takabe T(1995)Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid[J].Plant Molecular Biology,27(2):307-315.
    90.Nakamura T,Nomura M,Mori H,Jagendorf AT,Ueda A,Takabe T (2001)An isozyme of betaine aldehyde dehydrogenase in barley[J].Plant & cell physiology,42(10):1088-1092.
    91.Holmstrom KO,Welin B,Mandal A,Kristiansdottir I,Teeri TH,Lamark T,Strom AR,Palva ET(1994)Production of the Escherichia coli betaine-aldehyde dehydrogenase,an enzyme required for the synthesis of the osmoprotectant glycine betaine,in transgenic plants[J].The Plant Journal,6(5):749-758.
    92.Rathinasabapathi B,McCue KF,Gage DA,Hanson AD(1994)Metabolic engineering of glycine betaine synthesis:plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance[J].Planta,193(2):155-162.
    93.Landfald B,Strom AR(1986)Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli[J].Journal of Bacteriology,165(3):849-855.
    94.Lamark T,Kaasen I,Eshoo MW,Falkenberg P,McDougall J,Strom AR(1991)DNA sequence and analysis of the bet genes encoding the osmoregulatory choline-glycine betaine pathway of Escherichia coli[J].Molecular Microbiology,5(5):1049-1064.
    95.Andresen PA,Kaasen I,Styrvold OB,Boulnois G,Strom AR(1988)Molecular cloning,physical mapping and expression of the bet genes governing the osmoregulatory choline-glycine betaine pathway of Escherichia coli[J].Journal of General Microbiology,134(6):1737-1746.
    96.Ikuta S,Imamura S,Misaki H,Horiuti Y(1977)Purification and characterization of choline oxidase from Arthrobacter globiformis[J].Journal of Biochemistry,82(6):1741-1749.
    97.Nyyssola A,Kerovuo J,Kaukinen P,von Weymarn N,Reinikainen T (2000)Extreme halophiles synthesize betaine from glycine by methylation [J].Journal of Biological Chemistry,275(29):22196-22201.
    98.Waditee R,Tanaka Y,Aoki K,Hibino T,Jikuya H,Takano J,Takabe T (2003)Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica[J].Journal of Biological Chemistry,(7):4932-4942.
    99.Nuccio ML,McNeil SD,Ziemak MJ,Hanson AD,Jain RK(2000)Selvaraj synthesis in tobacco:G.Choline import into chloroplasts limits glycine betaine analysis of plants engineered with a chloroplastic or a cytosolic pathway[J].Metabolic Engineering,2:300-311.
    100.Wyn Jones RG,Storey R,Leigh PA(1977)A hypothesis on cytoplasmic osmoregulation[A].In:Matte E,Ciferri O(eds).Regulation of Cell Membrane Activities in Higher Plants[C].Amsterdam:ElsevierPNorth Holland Publication Corporation,121-136.
    101.Storey R,Wyn Jones RG(1975)Betaines and choline levels in Plants and their relationship to NaCl stress[J].Plant science Letters,4:161-165.
    102.Sakamoto A,Murata N(2001)The use of bacterial choline oxidase glycinebetaine-synthesizing enzyme tolerant stress-resistant transgenic plant [J].Plant Physiology,125:181-188.
    103.Reda E.A.Moghaieb,Hirofumi Saneoka,Kounosuke Fujita(2004)Effect of salinity on osmotic adjustment,glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants,Salicornia europaea and Suaeda maritime[J].Plant Science,166:1345-1349.
    104.Tarczynski MC,Jensen RG,Bohnert HJ(1993)Stress protection of transgenic tabacco by production of the osomolyte mannitol[J].Science,259:508-510.
    105.Robinson SP,Jones GP(1986)Accumulatioon of glycine betaine in chloroplasts provides osmotic adjustment during salt stress[J].Australian Journal of Plant Physiology,13:659-668.
    106.Pollard A,Wyn Jones RG(1979)Enzyme activities in concentrated solutions of glycinebetaine and other solutes[J].Planta,144:291-198.
    107.Incharoensakdi A,Takabe T,Akazawa T(1986)Effect of betaine on enzyme activity and subunit interaction of ribulose-1,5-bisphosphate carboxylase/oxygenase from Aphanothece halophytica[J].Plant Physiology,81:1044-1049.
    108.Nomura M,Hibino T,Takabe T,Sugiyama T,Yokota A,Miyake H,Takabe T(1998)Transgenically produced glycinebetaine protects ribulose 1,5-bisphosphate carboxylase/oxygenase from inactivation in Synechococcus sp.PCC7942 under salt stress[J].Plant & cell physiology,39:425-432.
    109.Manetas Y(1990)A re-examination of NaCl effects on phosphoenolpyruvate carboxylase at high(physiological)enzyme concentrations[J].Physiologia Plantarum,78:225-229.
    110.Bourot S,Sire O,Trautwetter A,Touze T,Wu LF,Blanco C,Bernard T (2000)Glycine betaine-assisted protein folding in a lysA mutant of Escherichia coli.J[J].Biological Chemistry,275(2):1050-1056.
    111.Yang XH,Liang Z,Lu CM(2005)Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants[J].Plant Physiology,138:2299-2309.
    112.Williams WP,Brain APR,Dominy PJ(1992)Induction of non-bilayer lipid phase separations in chloroplast thylakoid membrances by compatible co-solutes and its relation to the thermal stability of photo system Ⅱ[J].Biochim Biophys Acta,1099:137-144.
    113.侯彩霞,徐春和,汤章城,沈允钢(1997)甜菜碱对PSII放氧中心结构的选择性保护[J].科学通报,42(17):1857-1860.
    114.Muratan,Mohanty PS,Hayashih,Papa Georgiou GC(1992)Glycinebetaine stabilizes the association of extrinsix proteins with the photosynthetic oxygenevolving complex[J].FEBS Letters,296:187-189.
    115.李银心,常凤启,杜立群,郭北海,李洪杰,张劲松,陈受宜,朱至清(2000)转甜菜碱醛脱氢酶基因豆瓣菜的耐盐性[J].植物学报,42(5):480-484.
    116.刘风华,郭岩,谷冬梅,肖岗,陈正华,陈受宜(1997)转甜菜碱醛脱氢 酶基因植物的耐盐性研究[J].遗传学报,24(1):54-58.
    117.Yang G,Rhodes D,Joly RJ(1996)Effects of high temperature on membrane stability and chlorophyll fluouescence in glycinebtaine-deficient and glycinebetaine-containing maize lines[J].Australian Journal of Plant Physiology,1996,23:437-443.
    118.张立新,李生秀(2007)氮、钾、甜菜碱对水分胁迫下夏玉米叶片膜脂过氧化和保护酶活性的影响[J].作物学报,33(3):482-490.
    119.Zhao XX,Ma QQ,Liang C,Fang Y,Wang YQ,Wang W(2007)Effect of glycinebetaine on function of thylakoid membranes in wheat flag leaves under drought stress[J].Biologia Plantarum,51(3):584-588.
    120.Pirjo Makela,Markku Kontturi,Eija Pehu,Susanne Somersalo(1999)Photosynthetic response of drought- and salt-stressed tomato and turnip rape plants to foliar-applied glycinebetaine[J].Physiologia Plantarum,105(1):45-50.
    121.Ma QQ,Wang W,Li YH,Li DQ,Zou Q(2006)Alleviation of photoinhibition in drought-stressed wheat(Triticum aestivum L.)by foliar-applied glycinebetaine[J].Journal of Plant Physiology,163:165-175.
    122.Sakamoto A,Murata N(2002)The role of glycine betaine in the protection of plants from stress:clues from transgenic plants[J].Plant,cell &environment,25:163-171.
    123.Miyao M,Murata N(1989)The mode of binding of three extrinsic of 33kDa,23 kDa and 18 kDa in the Photosysterm Ⅱ complex of spinach[J].Biochimicaet Biophysica Acat,977:315-321.
    124.Giardi MT,Cona A,Geiden B,Kucera T,Masojidek J,Mattoo AK(1996)Long-term drought stress induces structural and functional eorganization of photosystem Ⅱ[J].Planta,199:118-125.
    125.侯彩霞,於建新,李荣,徐春和,汤章城,沈允钢(1995)甜菜碱稳定PSII放氧中心外周多肽机理[J].中国科学,28:355-361.
    126.Murata N,Mohanty PS,Hayashi H,Papageorgiou GC(1992)Glycinebetaine stabilizes the association of the extrinsic proteins with the photosynthetic oxygec-evolving complex[J].FEBS Letters,296:187-189.
    127.Norikazu Ohnishi,Norio Murata(2006)Glycinebetaine counteracts the inhibitory effects of salt stress on the degradation and synthesis of D1 protein during photoinhibition in Synechococcus sp.PCC 7942[J].Plant Physiology,141(2):758-765.
    128.衣艳君,刘家尧,骆爱玲,张其德,马德钦,王学臣,梁峥(1999)转BADH基因烟草的光系统Ⅱ和呼吸酶活性变化[J].植物学报,41(9):993-996.
    129.赵博生,衣艳君,刘家尧(2001)外源甜菜碱对干早/盐胁迫下的小麦幼苗生长和光合功能的改善[J].植物学通报,18(3):378-380.
    130.Alia,Kondo Y,Sakamoto A,Nonaka H,Hayashi H,Saradhi PP,Chen THH,Murata N(1999)Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase [J].Plant Molecular Biology,40:279-288.
    131.Papageorgiou G C,Fujimura Y,Murata N(1991)Protection of the oxygen-evolving Photoysstem Ⅱ complex by glycinebetaine[J].Biochem Biophys Acta,1057:361-366.
    132.Yang X,Wen X,Gong H,Lu Q,Yang Z,Tang Y,Liang Z,Lu C(2007)Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem Ⅱ in tobacco plants[J].Planta,225(3):719-733.
    133.Yang X,Liang Z,Wen X,Lu C(2008)Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants[J].Plant Molecular Biology,66:73-86.
    134.骆爱玲,刘家尧,马德钦,王学臣,梁峥(2000)转甜菜碱醛脱氢酶基因烟草叶片中抗氧化酶活性增高[J].科学通报,45(18):1953-1956.
    135.Ma QQ,Zou Q,Li YH,Li DQ,Wang W(2004)Amelioration of the Water Status and Improvement of the Antioxidant Enzyme Activities by Exogenous Glycinebetaine in Water-stressed Wheat Seedlings[J].Acta Agronomica Sinica,30(4):321-328.
    136.接玉玲,赵海洲,张伟,杨洪强,李德全,束怀瑞(2006)甜菜碱对干旱胁迫下湖北海棠超微弱发光及抗氧化能力的影响[J].应用生态学报,17(12):2394-2398.
    137.Lilius G,Holmberg N,Bulow L(1996)Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase[J].Biotechnology,14:177-180.
    138.Takabe T,Hayashi Y,Tanaka A,Takabe T,Kishitani S(1998)Evaluation of glycinebetaine accumulation for stress tolerance in transgenic rice plants.In Proceedings of International Workshop on Breeding and Biotechnology for Environmental Stress in Rice[M].Hokkaido National Agricultural Experiment Station and Japan International Science and Technology Exchange Center,Sapporo,Japan,63-68.
    139.王淑芳,王峻岭,赵彦修,张慧(2001)胆碱脱氢酶基因的转化及转基因番茄耐盐性的鉴定[J].植物生理学报,27(3):248-252.
    140.Bhattacharya RC,Maheswari M,Dineshkumar V,Kirti PB,Bhat SR,Chopra VL(2004)Transformation of Brassica oleracea vat.capitata with bacterial betA gene enhances tolerance to salt stress[J].Scientia Horticulturae,100:215-227.
    141.Hayashi H,Alia,Mustardy L,Deshnium P,Ida M,Murata N(1997)Transformation of Arabidopsis thaliana with the codA gene for choline oxidase;accumulation of glycinebetaine and enhanced tolerance to salt and cold stress[J].The Plant Journal,12(1):133-142.
    142.Sakamoto A,Alia,Murata N,Murata A(1998)Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold [J].Plant Molecular Biology,38(6):1011-1019.
    143.Yilmaz JL,Bulow L(2002)Enhanced stress tolerance in Escherichia coli and Nicotiana tabacum expressing a betaine aldehyde dehydrogenase/choline dehydrogenase fusion protein[J].Biotechnology Progress.Biotechnol,18(6):1176-1182.
    144.Quan RD,Shang M,Zhang H,Zhao YX,Zhang JR(2004)Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize[J].Plant Science,166:141-149.
    145.Tatyana Konstantinova,Daniela Parvanova,Atanas Atanassov,Dimitar Djilianov(2002)Freezing tolerant tobacco,transformed to accumulate osmoprotectants[J].Plant Science,163:157-164.
    146.Eung-Jun Park,Zoran Jeknic,Atsushi Sakamoto,Jeanine DeNoma1,Raweewan Yuwansiri1,Norio Murata,Tony H.H.Chen(2004)Genetic engineering of glycinebetaine synthesis in tomato protects seeds,plants,and flowers from chilling damage[J].The Plant Journal,40:474-487.
    147.Alia,Hayashi H,Chen THH,Murata N(1998)Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth[J].Plant,cell & environment,21(2):232-239.
    148.Holmstrom KO,Somersalo S,Mandal A,Palva ET,Welin B(2000)Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine[J].Journal of Experimental Botany,51:177-185.
    149.刘桂丰,程贵兰,姜静,白爽,于影,蔡智军,董京祥,李淑娟(2006)以胆碱脱氢酶基因对小黑杨花粉植株的遗传转化[J].植物生理与分子生物学学报,32(2):163-168.
    150.Quan RD,Shang M,Zhang H,Zhao YX,Zhang JR(2004)Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize[J].Plant biotechnology journal,2:477-486.
    151.吕素莲,尹晓燕,张可炜,张举仁(2004)农杆菌介导的棉花茎尖遗传转化及转betA植株的产生[J].高技术通讯,11:20-25.
    152.Jones GP(1986)Estimates of solutes accumulating in plants by 1H nuclear magnetic resonance spectroscopy[J].Australian journal of plant physiology,13:649-658.
    153.Xing W,Rajashekar CB(2001)Glycine betaine involvement in freezing tolerance and water stress in Arabidopsis thaliana[J].Environmental and experimental botany,46:21-28.
    154.王晶英,熬红,张杰,曲桂琴(2003)植物生理生化试验技术与原理[M].东北农业大学出版社,哈尔滨.52-53.
    155.王晶英,熬红,张杰,曲桂琴(2003)植物生理生化试验技术与原理[M].东北农业大学出版社,哈尔滨.84-85.
    156.Fan L,Zheng S,Wang X(1997)Antisense suppression of phospholipase Dα retards abscisic acid and ethylene promoted senescence of postharvest Arabidopsis leaves[J].The Plant cell,9:2183-2916.
    157.赵世杰,许长成,邹琦(1994)植物组织中丙二醛测定方法的改进[J].植物生理学通讯,30(3):207-210.
    158.Yemm EW,Willis AJ(1954)The estimation of carbohydrates in plant extracts by the anthrone[J].Biological Chemistry,57:508-514.
    159.王文平(1998)植物样品中游离氨基酸总量测定方法的改进[J].北京农学院学报,13:9-13.
    160.Gaxiola RA,Li J,Undurraga S,Dang LM,Allen GJ,Alper SL,Fink GR (2001)Drought- and salt-tolerant plants result from overexpression of the AVP1 H~+-pump[J].Proceedings of the National Academy of Sciences of the United States of America,98:11444-11449.
    161.Giannopolltis CN,Ries SK(1977)Superoxide Dismutase.I.Occurrence in higher plants[J].Plant Physiology,59:309-314.
    162.王修山,刘安郁(1991)棉铃体积测算模型探讨[J].中国棉花,18(4):22-23.
    163.刘祖棋,王洪春(1990)植物耐寒性及防寒技术[M].学术书刊出版社,北京,128-144.
    164.张艳敏(2004)甜菜碱与植物抗逆性[J].河北农业科学,8(2):85-90.
    165.McNeil SD,Nuccio ML,Ziemak MJ,Hanson AD(2001)Enhanced synthesis of choline and glycine betaine in transgenic tobacco plants that overexpress phosphoethanolamine N-methyltransferase[J].Proceedings of the National Academy of Sciences of the United States of America,98:10001-10005.
    166.Eung-Jun Park,Zoran Jeknie,Tony HH Chen.(2006)Exogenous Application of Glycinebetaine Increases Chilling Tolerance in Tomato Plants [J].Plant & cell physiology,47(6):706-714.
    167.Shi H,Lee B,Wu SJ,Zhu JK(2003)Overexpression of a plasma membrane Na~+/H~+ antiporter gene improves salt tolerance in Arabidopsis[J].Nature biotechnology,21:81-85.
    168.R.E.A.Moghaieb,N.Tanaka,Hirofumi Saneoka,Kounosuke Fujita (2000)Expression of betaine aldehyde dehydrogenase gene in transgenic tomato hairy roots leads to the accumulation of glycine betaine and contributes to the maintenance of the osmotic potential under salt stress[J].Soil Scince Plant Nutriention,46(4):873-883.
    169.Holmstorm KO(1998)Engineering plant adaption to water stress[J].Acta Universitatis Agricultureae Agraria,84:49-62.
    170.郭北海,张艳敏,李洪杰,杜立群,李银心,张劲松,陈受宜,朱至清(2000)甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达[J].植物学报,42(3):279-283.
    171.张艳敏,丁占生,温之雨,蒋春志,李辉,霍云谦,朱至清,陈受宜,郭北海(2003)逆境下转BADH基因小麦甜菜碱醛脱氢酶活性表达与甜菜碱积累[J].华北农学报,18(院庆专辑):36-39.
    172.Ahmad R,Kim MD,Back KH,Kim HS,Lee HS,Kwon SY,Murata N,Chung WI,Kwak SS(2007)Stress-induced expression of choline oxidase in potato plant chloroplasts confers enhanced tolerance to oxidative,salt,and drought stresses[J].Plant cell reports,DOI 10.1007/s00299-007-0479-4.
    173.Jia GX,Zhu ZQ,Chang FQ,Li YX(2002)Transformation of tomato with the BADH gene from Atriplex improves salt tolerance[J].Plant Cell Reports,21:141-146.
    174.韩德俊,陈耀锋,李春莲,郭东伟,李振岐(2007)转甜菜碱醛脱氢酶基因油菜的获得及其耐盐性研究[J].干旱地区农业研究,25(4):6-11.
    175.Ma XL,Wang YJ,Xie SL,Wang C,Wang W(2007)Glycinebetaine Application Ameliorates Negative Effects of Drought Stress in Tobacco[J].Russian Journal of Plant Physiology,54(4):472-479.
    176.Sayed H.Raza,Habib R.Athar,Muhammad Ashraf,Amjad Hameed (2007)Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance[J].Environmental and Experimental Botany,60:368-376.
    177.Ashraf M(2002)Salt tolerance of cotton:some new advances[J].Critical reviews in plant sciences,21(1):1-30.
    178.Kishitani S,Watanabe K,Yasuda S,Arakawa K,Takabe T(1994)Accumulation of glycinebetaine during cold acclimation and freezing tolerance in leaves of winter and spring barley plants[J].Plant,cell &environment,17:89-95.
    179.Deshnium P,Gombos Z,Nishiyama Y,Murata N(1997)The action in vivo of glycine betaine in enhancement of tolerance of Synechococcus sp.strain PCC7942 to low temperature[J].Journal of Bacteriology,179:339-344.
    180.Sakamoto A,Murata N(2000)Genetic engineering of glycinebetaine synthesis in plants.,current status and implications for enhancement of stress tolerance[J].Journal of experimental botany,51(342):81-88.
    181.Nuccio ML,Russell BL,Nolte KD,Rathinasabapathi B,Gage DA,Hanson AD(1998)The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase[J].The Plant journal,16(4):487-496.
    182.Huang J,Hirji R,Adam L,Rozwadowski K L,Hammerlindl J K,Keller W A,Selvaraj G(2000)Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants:metabolic limitations[J].Plant Physiology,122:747-756.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700