用户名: 密码: 验证码:
超声喷丸设备设计及工艺效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声喷丸设备是机械零件强化处理设备,是传统的气体喷丸和抛丸设备的更新换代设备。它广泛应用于对机械零部件的疲劳强度和寿命要求较高的航空、航天、汽车、核动力、兵器、石油、煤炭、化工、机车、工程机械、汽轮机、农机、塑料模具、电气开关等众多工业部门。
     超声喷丸设备主要由超声波发生器、换能器和变幅杆组成,其中变幅杆在喷丸过程中占有极其重要的地位,它的主要作用是在其输出端将换能器输入的机械振动的质点位移或速度放大,将超声能量集中在较小的面积上。放大系数是变幅杆的重要性能参数,对于目前的超声喷丸加工过程,丸粒的速度还远没有达到能够破坏受喷件安定性的程度,因此,提高丸粒的冲击速度即提高变幅杆的放大系数成为目前超声喷丸设备开发的首要任务,而传统形状的单一变幅杆显然无法达到该要求。
     本文以提高变幅杆的放大系数为根本目的,以解析法设计理论为基础,对级联式变幅杆进行设计,并通过有限元软件LS-DYNA对超声喷丸过程进行仿真分析。主要研究内容有:
     1.根据解析法设计单一、复合变幅杆,通过比较,选定两节所需变幅杆做为级联式变幅杆的推动节和输出节,选择的原则是在形状因数满足级联式变幅杆要求的情况下,通过放大系数的比较,选定放大系数较大的变幅杆。
     2.根据变幅杆端面直径和输入频率的确定,设计出符合超声喷丸实验设备的级联式变幅杆,主要是通过解析法求出其放大系数、节点位移和谐振长度等参数。
     3.根据振动理论和有限元方法,借助于有限元软件ANSYS对所设计出的级联式变幅杆进行模态分析,提取其纵向振动固有频率。并与解析法设计的级联式变幅杆的共振频率对比,提高级联式变幅杆设计制造的可行性。
     4.加工制造出所设计的级联式变幅杆,运用到超声喷丸实验设备当中,验证级联式变幅杆实际运用的可行性。
     5.将超声喷丸过程简化为丸粒撞击试件的过程,应用LS-DYNA软件进行有限元仿真。得出丸粒垂直于试件喷射时,随着丸粒直径增加或速度增大,试件最大应力应变值增加,但直径和速度增加到一定程度的时候,试件的最大应力应变值将不在增加,趋于稳定值。并且试件所产生的最大横向残余压应力总是大于最大纵向残余压应力,在各个方向上的最大横向残余压应力基本相等。当丸粒的抛射角度大于60°时,试件所产生的最大等效应力和纵向压应力变化不大,但各方向的最大横向压应力不再是等值。两丸粒撞击同一区域时,丸粒的最大应力应变值和单个丸粒在相同情况下撞击相比有明显的增大;而丸粒以同一角度沿不同方向撞击试件的同一区域要比丸粒以同一角度沿同一方向撞击试件所产生的残余拉应力要小。
Ultrasonic shot peening equipment, which is important surface treatment equipment, is a replacement equipment of traditional shot peening equipment and shot blasting equipment. It is widely used in aviation, aerospace, automotive, nuclear power, weapons, oil, coal, chemical industry, motorcycle, engineering machinery, gas turbines, agricultural machinery, plastic mold, electrical switches, and etc. industrial sectors which require a higher life expectancy and fatigue strength of mechanical components.
     Ultrasonic shot peening equipment is composed of the ultrasonic generator, transducer and the horn components. Among them, the horn is of extremely importance, and its primary role is to enlarge the particle displacement of the mechanical vibration or velocity that is inputted by transducer, and to concentrate the ultrasonic energy in a smaller area. Magnification factor of the horn is an important performance parameter. For the current ultrasonic shot penning process, the speed of shot is so small that can’t damage the stability of parts. Therefore, enhancing the impact speed of shot, namely improving the magnification factor of the horn, is the primary task under the current development of ultrasonic shot peening equipment. It is obviously that the single horn with traditional shape unable to meet the above request.
     In this dissertation, to enhance the magnification factor of horn is the fundamental purpose. The design of combination horn is based on analytical method, and finite element software LS-DYNA is used for the simulation analysis of the ultrasonic shot peening process. The main contents are as follows:
     1. The single horn and composite horn are designed based on analytical method. The driven horn section and output horn section of cascade horn is selected by comparing. The principle of selection is that under the requirements of the form factor the horn of large magnification factor is selected through the comparison of magnification factor.
     2. Based on the determined the end-horn diameter and input frequency, the combination horn met the requirement of the ultrasonic shot peening is designed. The parameters such as magnification factor, the length of the node and the resonance length are mainly derived through the analytic method.
     3. According to vibration theory and finite element method, modal analysis for the designed combination is carried out through the finite element software ANSYS11.0, and its natural frequency of vertical vibration is extracted. The extracted frequency by simulation is compared with the resonant frequency of the horn that is designed based on analytical method; hence the manufacturing feasibility of the designed combination horn is improved.
     4. The designed combination horn is manufactured and used for the ultrasonic shot peening experimental equipment to validate the feasibility for combination horn in practical application.
     5. Ultrasonic Shot peening process is simplified as the process of a shot strike against the sample. Finite element simulation software LS-DYNA is used to simulate this process. Following conclusions are obtained. The largest stress-strain values of specimen increases with the increasing of the shot speed and shot diameter, but the increases of the shot speed and shot diameter are limited. When they are greater than a certain value, the increases of them will not increase and become stable value. In addition, the maximum horizontal residual compressive stress is always greater than the maximum vertical one. And in all directions, the maximum horizontal residual compressive stress has the same value. When the spray angle of shot is greater than 60°, the largest equivalent stress and vertical compressive stress have little changes, but the maximum horizontal compressive stress in all directions is no longer equivalent. When two shots strike against the same region, the stress-strain values significantly increased compared with the single shot under the same conditions. Moreover, the shot impact to the same region of the specimen in different directions with the same angle generates smaller residual tensile stress than that under the same conditions but in the same direction.
引文
[1]周爱琴等.喷丸强化技术工艺试验及在生产中的应用[J].纺织机械,2005,1:47-49.
    [2]王仁智,汝继来.表面喷丸强化工艺的工程应用与强化[J].金属热处理学报.
    [3] Jack Champaigne.Shot Peening Overview[EB/OL]. Electronics Inc, 2001.
    [4] Jack Champaigne.The Little Book on Shot Peening[EB/OL]. Electronics Incorporated,2001.
    [5]曾元松等.先进喷丸成形技术及其应用与发展[J].塑性工程学报,2006,13(3):23-29.
    [6] Reiner Kopp,J rgen Schulze.Optimising the double-si-ded simultaneous shto peen forming,Proceedings of the 8th international conference on shot peening(ICSP-8),Garmisch-Partenkirchen,Germany,2002:227~233.
    [7] P O’Hara.Peen-forming-A Developmenting Tech-nique.Proceedings of the 8th international conference on shot peening(ICSP2-8),Garmisch -Partenkirchen,Ger-many,2002:215~226.
    [8]王仁智.喷丸形变强化工艺技术与现代机器制造业[J].工艺与装备,2003:69-71.
    [9]刘阳春.方兴未艾的喷丸强化处理新技术[J].机械视野,1996:10-11 .
    [10]张兴权等.金属零件表面改性的喷丸强化技术[J].电加工与模具,2005, (2):30-32.
    [11] Shot Peening Applications Guide[EB/OL].Metal Improvement Company. Electronics INC,2005.
    [12] Shot peening applications[EB/OL]. Metal Improvement Company Inc,2001.
    [13]刘云秋.喷丸强化对接触疲劳性能的影响[J].铸造,1999,12:28-31.
    [14]高玉魁.高强度钢喷丸强化残余压应力场特征[J].金属热处理,2003,28(4):42-44.
    [15]储继影,关占群,李占杰.喷丸强化效果和质量的表征指标及影响因素[J].汽轮机技术,2003,4:35-39.
    [16]孙艳.喷丸对渗碳齿轮表层组织的影响[J].制造业自动化,2006,28(8):41-45.
    [17]董星,段雄.喷丸强化机械及技术的发展[J].矿山机械,2004,7:66-68.
    [18]董星,段雄.高压水射流喷丸强化技术[J].表面技术,2005,34(1):48-49.
    [19]栾伟玲,涂善东.喷丸表面改性技术的研究进展[J].中国机械工程,2005,1(15):1405-1407.
    [20] Lu K,Lu J.Surface Nanocrystallization(SNC) of MetallicMaterials- Presentation of the Concept Behind a New Approach J.Mater Sci&Tech, 1999,15:193-197.
    [21] Tao N R,SuiM L,Lu J,etal Surface Nanocrystal-lization of Iron Induced by Ultrasonic Shot Peening.NanostructuredMater,1999,11(4):433-440.
    [22]张洪汪,刘刚,黑祖昆.表面机械研磨诱导AISI304不锈钢表层纳米化I组织与性能[J].金属学报,2003,39(4):341-346.
    [23]倪敏雄.激光喷丸技术及其应用[J].现代表面技术研究与应,2005,11:49-52.
    [24]曹凤国.超声加工技术[M].北京:化学工业出版社,2005.
    [25] JM.DUCHAZEAUBENE, Stressonic shot peening(Ultrasonic process) [C]. ICSP7,1999.
    [26]刘海英.超声喷丸强化机理的研究[D].太原:太原理工大学,2006.
    [27]杨志斌.旋转超声加工装置的设计与新型变幅杆的研究[D].太原:太原理工大学,2006.
    [28]林仲茂,超声变幅杆的原理和设计[M].北京:科学出版社,1987.
    [29]贺西平,胡时岳.复合超声纵振型变幅杆的简化设计[J].兰州大学学报,2002,10(38):24-27.
    [30]辛雅宁.一种新型超声电源换能系统的研究设计[D].西安:西北工业大学,2005.
    [31]郭仁生.机械工程设计分析和MATLAB应用[M].北京:机械工业出版社,2008.
    [32]张朝晖.ANSYS11.0结构分析工程应用实例解析[M].北京:机械工业出版社,2008.
    [33]万德安,刘春节.超声变幅杆的模态分析[J].机械与电子,2004(4):10-11.
    [34]高洁.超声变幅杆的优化设计及声学特性分析[D].西安:陕西师范大学,2006.
    [35]赖一楠,刘向东,罗建伟.级联式变幅杆有限元分析[J].哈尔滨理工大学学报,2001,6(1):50-53.
    [36]王时英,吕明,轧刚.圆锥过渡复合变幅杆动力学特性研究[J].太原理工大学学报,2007,38(2):95-97.
    [37]朱寅.超声变幅杆有限元谐振分析[J].设计与研究,2005,12:13-16.
    [38]贺西平,高洁.超声变幅杆设计方法研究[J].声学技术,2006,1:82-85.
    [39]杨超华.大截面超声变幅杆振动特性研究及设计软件开发[D].广东:广东工业大学,2006.
    [40]王敏慧.阶梯形变幅杆的有限元仿真及其在局部共振研究中的应用[D].西安:陕西师范大学,2005.
    [41]吴能赏,邓效忠,杨建军.准双曲面齿轮超声研齿系统中变幅杆的设计与研究[J].机械传动,2008,2:16-17.
    [42]刘战锋,李培繁,王天琦.超声复合变幅杆的设计与研究[J].现代制造工程,2008,2:102-104.
    [43]贺西平,胡时岳.复合超声纵振型变幅杆的简化设计[J].兰州大学学报,2002,5:24-27.
    [44]张波,赵波,李济顺.功率超声变幅杆固有频率的模态分析[J].机械制造,2005,5:25-27.
    [45]刘井权,闫久春,杨士勤.超声刀切割系统的模态分析[J].哈尔滨工业大学学报,2001,33(4):435-438.
    [46]郭林伟,解妙霞.指数型变幅杆的模态分析[J].榆林学院学报,2005,15(13):13-15.
    [47]原园,徐颖强,吕国志.应变强化模型的安定准则研究[J].固体力学学报,2007,28(3):229-234.
    [48]赖一楠,刘向东,罗建伟.级联式变幅杆有限元分析[J].哈尔滨理工大学学报,2001,6(1):50-52.
    [49]辛雅宁.一种新型超声电源还能系统的研究设计[D].西安:西北工业大学,2005.
    [50]王仁智.金属晶粒纳米化与亚晶粒纳米化技术[J].材料热处理学报,1999,10:92-98.
    [51]冯汝坤.结构塑性安定性理论的若干进展及应用[J].河北工业科技,2005,22 (6):335-369.
    [52]高玉魁.高强度钢喷丸强化残余压应力场特征[J].金属热处理,2003,28(4): 42-44.
    [53]艾菊兰.车体钢结构表面喷丸强化有限元分析[D].济南:山东大学,2007.
    [54]凌祥,彭薇薇,倪红芳.喷丸三维残余应力场的有限元模拟[J].机械工程学报,2006,42(8):182-187.
    [55]李雁淮,王飞,吕坚.单丸粒喷丸模型和多丸粒喷丸模型的有限元模拟[J].西安交通大学学报,2007,41(3):348-352.
    [56]谭谆礼.金属材料高能喷丸表面纳米化研究[D].大连:大连铁道学院,2002.
    [57]洪滔,王志伟,袁巨龙.喷丸强化过程的有限元和离散元模拟[J].中国机械工程,2008,19(11):1321-1325.
    [58]刘海英,轧刚,路会龙.超声喷丸强化产生残余应力的有限元分析[J].新技术新工艺,2008,1:25-28.
    [59] E.Sh. Statnikov. Physics and mechanism of ultrasonic impact treatment[C]. IIW Doc. XIII-2004-04,2004.
    [60] Yoshihiro Watanabe, Kaneshi Hattori, Mitsuru Handa. Effect of Ultrasonic Shot Peening on Fatigue Strength of High Strength Steel[C]. Proceedings of ICSP 8th , Munich, Germany,2002:305-310.
    [61] Wang T,Platts M J,Lever A.A Process Model for shot Peen Forming.Journal of Materials Processing Technology.2006,172:159-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700