用户名: 密码: 验证码:
传统钙法除磷的机理及改良
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷污染可对人体、海洋生物、土壤、水体造成多种程度不同的危害,尤其是水体中以正磷酸盐离子、聚合磷酸盐及有机林化合物形式存在的磷,总质量浓度超过86ug/L(静止的水体)时,即判断该水体为富营养化,受磷污染。水体的过量的磷将会引起赤潮,藻类大量繁殖,鱼虾死亡等恶性现象。
     人类生产活动中磷废水的排放是导致自然界水体富营养化的关键因素。其中汽车制造业的工艺环节里可产生涂装废水,其所含的磷浓度相当高,从30mg/L至300mg/L不等,还含有其他重金属等物质。若涂装废水不经处理直接排放,污染水体将无法有效的治理。
     本文采用物化法中的传统钙法CaCl_2和熟石灰Ca(OH)_2除磷,研究其与磷酸盐反应的影响因素和机理。在此基础上再探寻一种基于两种除磷常见的含钙矿物(石灰石CaCO_3与熟石灰Ca(OH)_2)联合处理水样的改良方法,使在控制成本的情况下,二者除磷优势得到最大化发挥,缺点得以弥补,解决传统钙法存在机理不统一,出水泥水分离情况差一些影响其充分发挥作用的问题。
     以重庆市长安汽车五厂的涂装废水为试验水样,通过FT-IR和孔径测量等手段对影响因素进行分析,获取最佳工艺参数。之后进行对传统钙法出水存在的问题的试验,通过定义污泥沉降比来重点考察出水的沉降性能。试验结果表明:
     1.熟石灰法除磷:在废水含磷量为100mg/L的情况下,饱和石灰乳的投加量为25mL/L,溶液pH≥11.0,在25℃反应10~15min后,磷去除率可达99%;溶液pH值对反应过程具有控制性的作用,[OH-]含量的增多可促进出水磷去除率的升高。出水pH值较高,需要回调,消耗用酸量较大。
     2.氯化钙法除磷:在废水含磷量为100mg/L的情况下,投加量大于0.1100g,pH≥11.0,室温下反应10min,磷去除率可达99%。CaCl_2除磷效果好,但对溶液的酸碱环境要求高,出水pH值也比较高,且药剂费用高于熟石灰。
     3.结合除磷产物的FT-IR与XRF分析表明,传统石灰法除磷的主要机理是:在Ca2+离子和OH-离子浓度较高的体系中,磷酸根离子与二者逐步生成不同稳定程度的沉淀产物,即先由DCPD转化为高Ca/P、更加稳定的TCP,继而转化为HAP ,即DCPD→TCP→HAP。而吸附作用不是这一除磷过程的主要机理。
     4.改良钙法(石灰石和熟石灰联合)除磷:在试验室废水磷浓度100mg/L,初始pH=4.5的室温下,石灰石投加量0.0300g,反应10min后,投加熟石灰0.0700g反应10min后,磷去除率可达99.32%。产物颗粒明显大于石灰法,沉降性能更好;出水pH值比石灰法低,可减少回调用酸。
     5.在处理实际涂装废水时,原水样磷酸盐含量高达339.3mg/L ,在0.0200+0.0750g的投加比与5+10min的处理时间下,石灰石+熟石灰改良钙法工艺对实际废水中磷的去除率>99.5%。相比传统石灰法,改良钙法的除磷产物的颗粒粒径明显增大,沉降性能显著提高,出水pH更低一些,可减少约28%的回调用酸量。
Phosphorus pollution will cause various damages to the human body, marine organisms, soil and water. Especially for the phosphorus in water in the forms of orthophosphate ion and polymeric phosphate of which the total concentration is over 86ug/L (immobile water) will bring about eutrophication of water body.
     Human production activity is the key reason causing water eutrophication in nature. Among these activities, the process of automobile manufactory and appliance industry will produce coating water containing quite a high phosphate concentration from 30mg/L to 300mg/L plus some heavy metals. There will be a series contaminationg if the coating water is discharged directly without effective treatment.
     Through the experiments of phosphate removal by traditional methods (calcium chloride CaCl_2 and lime Ca(OH)_2 and limestone CaCO3), by means of FT-IR, XRF and chemical analysis, the influencing factors and the mechanisms when they react with phosphates were investigated. On basic of this, in prerequisite that the cost be under control, to maximize the advantages of both lime Ca(OH)_2 and limestone CaCO_3 ,to improve the bad separation of precipitations and solve the problem of acid waste for adjusting water of effluent.
     The sample coating water obtained from an automobile factory was studied using combined method of lime Ca(OH)_2 and limestone CaCO3. The key influencing factors were analyzed to achieve the optimal technological parameters.
     The results indicate:
     1. Hydrated lime method: with a situation of TP in phosphate wastewater, dosage of hydrated lime, pH , temperature, oscillation time (separately 100mg/L, 25mL/L, more than 11.0, 25℃and 10-15min), the phosphate removal in supernatant reaches to 99%. The pH value plays a control role in the process of removing phosphates. Increasing [OH~-] can improve the P removal, but also increase the pH in effluent leading to extra acid quantity for adjusting pH near neuter.
     2. Calcium chloride method: with a situation of TP in phosphate wastewater, dosage of hydrated lime, pH, temperature, oscillation time (separately 100mg/L, 0.1100g/L, more than 11.0, at room temperature and 10min), the phosphate removal in supernatant reaches to 99%. Its chemicals cost is higher than that of lime, and the reaction calls for a high pH acid-base environment, also the effluent has a quite high pH value.
     3. Analysing the products of phosphate removing by FT-IR and XRF, the main mechanism is that: it appears that the phosphate is precipitated in the presence of Ca2+ and high pH in a transformation process DCPD→TCP→HAP where the Ca/P and thermal stability are higher. Adsorption does not play a significant role in phosphate removal with the two calcium methods.
     4. Modified Calcium method (Limestone and lime combined method): on base of making phosphate wastewater, with initial pH=4.5, at room temperature, react with the limestone dosage of 0.0300g for 10min and lime dosage of 0.0700g for 10min, the process remove the phosphates by 99.32%. Its product partical size is significantly greater than that of lime method, the precipitatants of effluent are easy and quick to separated, and pH value is lower than lime method alone saving the usage of adjusting acid.
     5. On base of actual coating wastewater, with a high TP of 339.3mg/L, the same initial pH, dosages of 0.0200+0.0750g and reaction time of 5+10min, the combined treatment remove more than 99.5% phosphates. Compared with traditional lime method, the particle size of products is bigger, settling performance is improved and the pH of effluent is lower which saving adjusting acid cost.
引文
[1] Balmér P. Phosphorus recovery——an over view of potentials and possibilities[J]. Scope Newsletter, 2005, 59: 15-16.
    [2]谢雄飞,肖锦.水体富营养化问题评述[J].四川环境, 2000, 19(2): 22-25.
    [3]孙家寿.晶析法除磷技术[J].武汉化工, 1991, 2: 1-3.
    [4]高延耀,顾国维.水污染控制工程(下册第二版) [M].北京:高等教育出版社, 1999.
    [5]杨岳平,徐新华,刘佳福.废水处理工程及实例分析[M].北京:化学工业出版社, 2003.
    [6]姚重华.废水处理计量学导论[M].北京:化学工业出版社, 2002.
    [7]杜冬云,柯丁宁,赵小蓉等.改性累托石磷的吸附[J].非金属矿, 2003, 26(5): 51-54.
    [8]杨焱明,刘树元,郑显鹏,刘庆等.污水除磷技术现状及发展趋势[J].济南大学学报(自然科学版), 2008, 22(2): 166-170.
    [9]李昌耀,胡敏捷,吴洪锋等.石灰法处理磷化废水的试验研究[J].能源环境保护, 2006, 20(6): 26-28.
    [10] Hultman B., Levlin E., Div K. S. Research and experiences in Nordic countries[J]. Scope Newsletter, 2001, 41(1): 29-31.
    [11] Peter P., Andreas G.. Phosphate recovery by the crystallization process: experience and developments [C]. Second International Conference on Recovery of Phosphate from Sewage and Animal Wastes, Holland, 2001, 3: 12-13.
    [12]李小平.美国湖泊富营养化的研究和治理[J].自然杂志, 2002, 24(2): 53-68.
    [13] Bellier N., Chazarenc F., Comeau Y.. Phosphaorus removal from wastewater by mineral apatite[J]. Water Research, 2006, 40: 2965-2971.
    [14] Lee C.W., Kwon H.B., Jeon H.P., et al. A new recycling material for removing phosphorus from water[J]. Journal of Cleaner Production, 2009,17: 683–687.
    [15]陈春华,王焰新,万昆.化学药剂处理湖泊沉积物磷污染的实验研究[J].安全与环境工程, 2006, 13(2): 21-23.
    [16]郝凌云,周荣敏,周芳等.磷酸铵镁沉淀法回收污水中磷的反应条件优化工业用水与废水, 2008, 39(1): 58-61.
    [17]熊鸿斌,刘文清.钙法化学混凝处理高浓度含磷废水技术研究[J].水处理技术, 2004, 30(5): 307-309.
    [18]陈春华,王焰新,万昆.化学药剂处理湖泊沉积物磷污染的实验研究[J].安全与环境工程, 2006, 13(2): 21-23.
    [19]吴海林,杨开,王红宇等.废水除磷技术的研究和发展[J].环境污染治理技术与设备,2003, 4(1): 53-54.
    [20]罗建中.固定化细胞技术用于废水度处理[J].环境污染治理技术与设备, 2002, 3(6): 68-71.
    [21]张静.利用含钙含磷矿物进行水体除磷的研究及机理探讨[D].北京,中国地质大学, 2005.
    [22]金爱芳,何江涛,郑红.雪硅钙石对生活污水中磷的去除实验[J].环境化学, 2008, 27(4): 472-475.
    [23]王凤英,李利红,于凤娥.改性沸石除磷性能的试验研究[J].广东化工, 2007, 10(34): 82-85.
    [24]周树礼,陈建中,林昆霞.微波镧有机交联改性膨润土吸附磷的研究[J].环境科学导刊, 2007, 26(2): 6-9.
    [25]王佳.固定化藻菌的小球浓度对模拟生活污水脱氮除磷效果的影响[J].水资源保护, 2005, 21(1): 72-74.
    [26]王冰. Cd2+对固定化小球藻度除磷及其生理指标的影响[J].大连民族学院学报, 2005, 7(3): 58-61.
    [27]林永波,张丹,孙少晨.海藻酸钠凝胶球对水中无机磷的吸附性能[J].东北林业大学学报, 2007, 35(8): 68-70.
    [28] Dongye Zhao, Sengupta A. K.. Ultimate removal of phosphate from wastewater after using a new class of polymeric ion exchangers[J]. Water Res., 1998, 32: 1613-1625.
    [29] Seida Y., Nakano Y.. Removal of phosphate by layered double hydroxides containing iron[J]. Water Res., 2002, 36: 1306-1312.
    [30]邓雁希,许虹,钟左炎.非金属矿物及工业废弃物在含磷废水中的应用[J].中国非金属矿工业导刊, 2002, 3: 30-33.
    [31] Dongye Zhao, et al. Selective removal and recovery of phosphate in a novel fixed-bed process[J]. Wat. Sci. Tech., 1996, 33: 139-147.
    [32] Akay G., Keskinler B., ?akici A., et al. Phosphate removal from water by red mud using crossflow microfiltration[J]. Water Res., 1998, 32: 717-726.
    [33]宋光敏,罗建中,雷育涛等.锌对含磷废水化学特性的影响[J].水处理技术, 2005, 31(11): 20-22.
    [34]何怀胜.化学沉淀-过滤法处理含锌磷化废水[J].化工给水排水设计, 1998, 2: 10-13.
    [35] Stratful I., Scrimshaw M. D., Lester J. N.. Conditions influencing the precipitation of magnesium ammonium phosphate[J]. Wat. Res., 2001, 35(17): 4191-4199.
    [36] Momberg G. A., Oellermann R. A.. The removal of phosphate by hydroxyapatite and struvite crystallisation in South Africa[J]. Wat. Sci. Tech., 1992, 26(5-6): 987-996.
    [37] Ohlinger K. N., Young T. M., Schroeder E. D.. Predicting struvite formation in digestion[J]. Wat. Res., 1998, 32(12): 3607-3614.
    [38]张春阳,刘建广,王爱华.结晶法除磷技术的发展与应用[J].节能技术, 2006, 24(135): 63-69.
    [39] Karapinar N., Hoffmann E., Hahn H. H.. P-recovery by secondary nucleation and growth of calcium phosphates on magnetite mineral[J]. Water Res., 2006, 40(6): 1210-1216.
    [40] Karapinar N., Hoffmann E., Hahn H. H.. Magnetite seeded precipitation of phosphate[J]. Water Res., 2004, 38(13): 3059–3066.
    [41] Shilton A., Pratt S., Drizo A., et al.‘Active’filters for upgrading phosphorus removal from pond systems[J]. Wat. Sci. Tec., 2005, 51(12): 111–116.
    [42] Kim E. H., Lee D. W., Hwang H. K., et al. Recovery of phosphates from wastewater using converter slag: Kinetics analysis of a completely mixed phosphorus crystallization process[J]. Chemosphere, 2006, 63(2): 192–201.
    [43] Song Y., Weidler P. G., Berg U., et al. Calcite-seeded crystallization of calcium phosphate for phosphorus recovery[J]. Chemosphere, 2006, 63(2): 236–243.
    [44] Comeau Y., Brisson ,J., Réville J. P., et al. Phosphorus removal from trout farm effluents by constructed wetlands[J]. Wat. Sci.Tec., 2001, 44(11–12): 55–60.
    [45] Molle P., Liénard A., Grasmick A., et al. Phosphorus retention in subsurface constructed wetlands: Investigations focused on calcareous materials and their chemical reactions[J]. Wat. Sci.Tec., 2003, 48(5): 75–83.
    [46] Lee C. W., Kwon H. B., Jeon H. P., et al. A new recycling material for removing phosphorus from water[J]. Journal of Cleaner Production, 2009, 17: 683-687
    [47] Henze Mogens ,Harremoes, Poul LaCour Jan. Wastewater Treatment:Biological and Chemical Progress(Third edition)[M]. New York: Springer- Verlag, 2002
    [48] L Montastruc, C Azzaro -Pantel, B Biscans, et al. A thermochemical approach for calcium p hosphate precipitation modeling in a pellet reactor[J]. Chemical Engineering Journal,2003, 94: 41-50.
    [49]徐丰果,罗建中,凌定勋.废水化学除磷的现状与进展[J].工业水处理, 2003, 5: 18-20.
    [50] Barat R., Montoya T., Borras, L., et al. Interactions between calcium precipitation and the polyphosphate-accumulating bacteria metabolism[J]. Water Research, 2008, 42: 3415-3424.
    [51] Metcalf & Eddy, Inc. Wastewater Engineering Treatment and Reuse (Fourth Edition) [M].北京:清华大学出版社, 2002.
    [52] Lena Johansson Westholm.Substrates for phosphorus removal-Potential benefits for on-site wastewater treatment[J]. Water Research, 2006, 40: 23-36.
    [53]程慧琳,谢黎.纳米碳酸钙去除水中磷的实验研究[J].工业安全与环保, 2008, 34(4): 17-19.
    [54]刘绍根,张世平,黄显怀,两级氯化钙化学沉淀法处理电冰箱、洗衣机生产含磷废水[J].给水排水, 2001, 27(6): 45-48.
    [55]张显忠,张智,魏虎兵.酸洗磷化废水处理工程[J].水处理技术, 2007, 33(8): 85-87.
    [56]朱伟峰.化学沉淀法处理含磷废水试验研究[J].江苏丝绸, 2003, 6: 20-22.
    [57]任艳平,何宗健,彭希珑.国内汽车涂装废水处理技术[J].江西化工, 2005, 2: 38-40.
    [58]蔡莹,高亮.典型汽车涂装废水处理工艺[J].净水技术, 2004, 23(6): 41-44.
    [59]陶秀成,黄小甲,王玲.汽车磷化废水的处理研究及其应用[J].实验与技术, 2008, 24(7): 594-595.
    [60]熊鸿斌,刘文清,李鸿敬.钙法处理高浓度含磷废水[J].中国给水排水, 2003, 19(5): 91-92.
    [61]周寅,罗春,潘俊宇等.新型除磷混凝剂的研制与应用[J].油气田环境保护, 2008, 18(3): 32-37.
    [62]王里奥,钟山,刘元元等.方解石去除肺水肿高浓度磷的反应动力学及机理[J].土木建筑与环境工程, 2009, 21(4): 107-111.
    [63]方海峰,黄颖,林金清.从废水中回收磷的主要方法和常见工艺[J].环境科学与技术, 2007, 30(10): 104-107.
    [64] Westholm L. J.. Substrates for phosphorus removal-Potential benefits for on-site wastewater treatment[J]. Water Research, 2006, 40: 23-36.
    [65]杨树成,贺延龄,张鹏翔等.不同底物条件下UASB反应器中碳酸钙的沉淀[J].环境科学, 2009, 30(3): 822-826.
    [66]杨万万.碳酸钙沉淀诱导期影响因素的研究[J].四川化工, 2008, 11(4): 5-7.
    [67]薛华,李隆弟,郁鉴源等.分析化学[M].北京:清华大学出版社, 1994.
    [68]吴菊珍,王丛岭.磷化涂装废水的工艺研究[J].环境工程, 2005, 23(2): 23-25.
    [69]陈敏,程刚,李艳等.微电解法处理磷化废水的试验研究[J].环境科学与管理, 2006, 31(6): 100-102.
    [70]赵济强,林西华.电镀涂装综合废水处理工程实践[J].工业水处理, 2005, 25(11): 60-62.
    [71]朱乐辉,付朝臣.曝气生物滤池工艺处理汽车涂装废水[J].环境工程, 2006, 24(1): 76-78.
    [72] Yonghui Song, Hahn H. H., Hoffmann E.. Effects of solution conditions on the precipitation of phosphate for recovery: a thermodynamic evaluation[J]. Chemosphere, 2002, 48(10):1029-1034.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700