用户名: 密码: 验证码:
反演区域参数建立加州地震动衰减关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震动衰减规律表达地震震源、传播途径和场地条件三方面因素对地震动特征的影响,用于推算工程场地的地震动,广泛应用于地震动区划图的编制,地震安全性评价,大多是根据强地震动观测数据统计拟合的经验性关系。本文借助基于地震学的方法,探讨缺乏强地震动观测数据的国家和地区建立衰减关系的方法,重点解决区域性参数的估计这一主要难点。
     总体思路是收集小地震观测数据,这在许多国家或地区已经积累了一定的数量,以据此计算的富氏谱的外包络线为目标,借助遗传算法反演三、五个关键的区域震源、衰减参数,依其建立区域地震动衰减关系。通过与观测数据及相应地区的经验性衰减关系的对比,考察结果的可靠性。
     从NSMP数据库中选取了加利福尼亚地区16个基岩台站在50次震级小于5.0的小地震中得到的68条观测记录(每条记录包括两个水平向)。计算的富氏谱显示了很强的振荡起伏,不是光滑的曲线,即使是震级、距离相近的记录,得出的富氏谱也有较大的差别。为了避免反演不稳定,采用富氏谱2~25Hz频段的外包络线为目标函数。借助遗传算法,先后反演了震源参数应力降??、衰减参数品质因子Q ? Q0 f ?中的Q0和? ,以及这三个参数和几何衰减模型中的两个分段点。这五个参数都是与区域地壳结构和介质特性密切相关的,不同地区会有差别,对地震动的衰减有控制作用。反演结果,与加州以前发表的区域参数研究成果大体上相符。基于地震学的随机合成方法,借助平稳随机振动理论、Parseval定理估计均方根加速度a rms,进而推算地震动加速度峰值。采用本文反演的参数,建立了区域地震动衰减关系。与本文使用的小震数据比较,符合得比较好,分组比较显示随着震级的增加,有差别增大的趋势。与美国最近发表的NGA项目成果的五条衰减关系比较,小震符合得好,随震级增大,差别越来越大;近场符合得相对好些,随距离增大,差别也越来越大。说明本文探讨的方法是有前途的,进一步的研究中要注意补充中-远场的数据。
Ground motion attenuation relation describes the effect of earthquake source, wave propagation path and local site condition on the motion, can applied to estimate ground motion for seismic design, and is widely adopted in seismic zonation, site seismic hazard assessment. Most of the relations are empirical from statistical fit of observed data. The approach to develop a ground motion attenuation relation in a country or region with no enough observed data is deal with by means of seismological method in this paper, and mainly on the estimation of regional parameters.
     Some observed data in small earthquake is adopted, since they are usually available in many countries or regions. Total 68 records from 50 small events with magnitude less than 5.0 at 16 rock site stations, each has two horizontal components, are collected from NSMP (National Strong Motion Project) data bank.
     The calculated Fourier spectra from the data are taken as object of the inversion of three or five key parameters in regional source and attenuation, by Generic Algorithm. The regional ground motion attenuation is developed on this basis, and compared with the observed data and the empirical relation in the region, to demonstrate the result reliability. To guarantee the stability of the inversion, the envelopes of the Fourier spectra in range of 2-25 Hz are taken as the object function. The regional stress drop (source parameter), Q0 and ? in regional quality factor (damping attenuation parameter), and these three with another two parameters in geometric attenuation, are inversed respectively. These five parameters are all closely related with the structure and medium of the regional crust, and must be different in different regions. They control the rate of ground motion attenuation. The result is in the range of the parameter values published in regional parameter study in California.
     The seismological method with random synthesis, estimates mean square root acceleration a rms by Parseval theorem, and then the peak acceleration. The regional ground motion attenuation is developed by adopting the inversed parameter values. The result is consistent with the data adopted in this paper, and detail comparison in groups shows that the difference at larger magnitude is getting larger. From the comparison with the five attenuation relations published recently by the project NGA (Next Generation Attenuation), one can find that the result of this paper is close to NGA result at small magnitude range, and is getting different as magnitude increasing; is relatively good at near distance, and getting different as distance increasing. The fact illustrates that the approach deal with in this paper is promising, and more moderate to far data must be supplied in further study.
引文
1王国新.强地震动衰减研究[D].中国地震局工程力学研究所博士学位论文. 2001:68~110
    2姜慧.地震动随机模拟方法中的场地效应研究[D].中国地震局地球物理研究所博士学位论文. 2005:2~5
    3 K. Kanai. Improved Empirical Formula for the Characteristics of Strong Earthquake Motion[C]//. Proc. Japan Earthq. Eng. Symp. Japan. 1966: 1~4
    4 K. W. Campell. Near-Source Attenuation of Peak Horizontal Acceleration (a)[J]. Bull. Seism. Soc. Am. 1981, 71(6): 2039~2070
    5 K. W. Campbell. Strong Motion Attenuation Relations: A Ten-Year Perspective[J]. Earthquake Spectra. 1985, 1(4): 759~791
    6 W. B. Joyner, D. M. Boore. Peak Horizontal Acceleration and Velocity from Strong-Motion Records Including Records from the 1979 Imperial Valley, California, Earthquake[J]. Bull. Seism. Soc. Am. 1981, 71(6): 2011~2038
    7田启文,廖振鹏等.根据烈度资料估算我国地震动参数衰减规律[J].地震工程与工程振动. 1986, 6(1): 21~35
    8霍俊荣.近场强地面运动衰减规律的研究[D].国家地震局工程力学研究所博士论文. 1986:1~15
    9郭玉学,王国新.华北地区基岩场地水平加速度的衰减规律[J].地震工程与工程振动. 1990, 10(1): 41~50
    10王国新,陶夏新.地震动衰减关系拟合的新两步法[J].地震工程与工程振动. 2001,20(1): 24~28
    11 Wong Yuk Lung, Zhao John X, Luo Qifeng. Attenuation characteristics of ground motions in northern China[J]. Earthquake Engineering and Engineering Vibration. Vol.1 No.2: 161~166
    12 J. N. Brune. Tectonic Stress and the Spectra of Seismic Shear Waves from Earthquake[J]. J. Geophys. Res. 1970, 75(26): 4997~5009
    13 J. N. Brune. Correction[J]. J. Geophys. Res. 1971, 76(20): 5002
    14 T. C. Hanks. B Values and ?? ? Seismic Source Models: Implications for Tectonic Stress Variations along Active Crustal Fault Zones and the Estimation of High-Frequency Strong Ground Motion[J]. J. Geophys. Res. 1979, 84(B5): 2235~2242
    15 R. K. McGuire, T. C. Hanks. RMS Accelerations and Spectral Amplitudes of Strong Ground Motion during the San Fernando, California, Earthquake[J]. Bull. Seism. Soc. Am. 1980, 70(5): 1907~1919
    16 T. C. Hanks, R. K. McGuire. The Character of High Frequency Strong Ground Motion[J]. Bull. Seism. Soc. Am. 1981, 71(6): 2071~2095
    17 S. H. Hartzell, J. N. Brune. The Horse Canyon earthquake of August 2, 1975-Two-stage stress-release process in a strike-slip earthquake[J]. Bull. Seism. Soc. Am. 1979, 69: 1161~1173
    18 G. M. Atkinson, R. F. Mereu. The Shape of Ground Motion Attenuation Curves in Southeastern Canada[J]. Bull. Seism. Soc. Am. 1992, 82(5): 2014~2031
    19 N. A. Abrahamson, W. J. Silva. Empirical Response Spectral Attenuation Relations for Shallow Crustal Earthquake[J]. Seismological Research Let. 1997, 68(1): 94~127
    20陶夏新,孙晓丹,陶正如.对新一代地震动衰减关系研究的看法[C]//.第七届全国地震工程学术会议论文集. 2006:58~65
    21 D. M. Boore. Simulation of Ground Motion Using the Stochastic Method[J]. Pure Appl. Geophys. 2003, 160: 635~676
    22 S. O. Rice. Mathematical Analysis of Random Noise[J]. Bell. System. Technical. Journal. 1944, 23: 282~332, 1945, 24: 52~162
    23 D. M. Boore. Stochastic Simulation of High-Frequency Ground Motions Based on Seismological Models of the Radiated Spectra[J]. Bull. Seism. Soc. Am. 1983, 73(6): 1865~1894
    24 G. M. Atkinson. Attenuation of Strong Ground Motion in Canada from a Random Vibrations Approach[J]. Bull. Seism. Soc. Am. 1984, 74(6): 2629~2653
    25 G. M. Atkinson, D. M. Boore. Ground-Motion Relation for Eastern North America[J]. Bull. Seism. Soc. Am. 1995, 85(1): 17~30
    26 A. Frankel, C. Mueller, T. Barnhard et al. National Seismic Hazard Maps: Documentation June 1996[R]. U. S. Geol. Surv. Open-File Rept. 1996, 96-532:1~69
    27 G. M. Atkinson, D. M. Boore. Evaluation of Models for Earthquake Source Spectra in Eastern North America[J]. Bull. Seism. Soc. Am. 1998, 88(4): 917~934
    28 K. W. Campbell. Prediction of Strong Ground Motion Using the Hybrid Empirical Method and Its Use the Development of Ground-Motion (Attenuation) Relations in Eastern North America[J]. Bull. Seism. Soc. Am. 2003, 93(3): 1012~1033
    29 D. M. Boore. SMSIM: Fortran Programs of Simulating Ground Motions From Earthquakes, Version2.0-A Revision of OFR 96-80-A[R]. U. S. Geol. Surv. Open-File Rept. 2002
    30胡聿贤,张敏政.缺乏强震观测资料地区地震动参数的估计方法[J].地震工程与工程振动. 1984, 4(1): 9~15
    31胡聿贤,周克森,阎秀杰.缺乏地震动加速度记录地区地震动估计的映射法[J].地震工程与工程振动. 1996, 16(3): 17~25
    32刘充.基于随机振动理论的地震动衰减[D].哈尔滨工业大学硕士学位论文. 2005:8
    33刘小弟,王亚勇,高东等.近场地面运动特征研究[J].澜沧-耿马强震震害.地震出版社. 1989: 85~94
    34胡聿贤.地震工程学[M].地震出版社. 2006: 26~28
    35 W. B. Joyner, D. M. Boore. Peak horizontal acceleration and velocity from strong-motion records including records from 1979 Imperial Valley, California Earthqtlake[J]. Bull. Seism. Soe. Am. 1981, 71(6): 2011~2038
    36 B. A Bolt, N. A. Abrahamson. New Attenuation relations for Peak and expected accelerations of strong ground motion[J]. Bull. Seism. Soc. Am. 1982, 72(6): 2307~2321
    37 R. D. Borcherdt. Simplified site classes and empirical amplification factors for site-dependent code provisions[C]//. Proc. NCEER/SEAOC/BSSC workshop on Site Response During Earthquake and Seismic Code Provisions. Los Angeles: University of Southern California. 1992
    38 D. M. Boore, W. B. Joyner, T. E. Fumal. Estimation of response spectra and Peak acceleration from western North American earthquakes: An interim report[R]. U.S. Geol. Survey Open-File Report, 1993, 72:93~509
    39王彦飞.反演问题的计算方法及研究[M].高等教育出版社. 2007:1~2
    40姚姚.蒙特卡洛非线性反演方法及应用[M].冶金工业出版社. 1997:1~21
    41 Holland J. H. Adaptation in Natural and Artificial Systems[M]. The University of Michigan Press. 1975
    42陈国良,王熙法,庄镇泉等.遗传算法及其应用[M].人民邮电出版社. 1996:3~5
    43 Michalewicz, Z. Genetic Algorithms+Data Structrue=Evolutionary Program[M]. 2nd Edition. Spring-Verlag. 1994
    44 Krishnakumar K. Micro-Genetic Algorithms for Stationary Non-stationary Function Optimization[J]. SPIE: Intelligent Control and Adaptive Systems. 1989: 289
    45 Ali Fatehi, Robert B. Herrmann. High-Frequency Ground-Motion Scaling in the Pacific Northwest and in Northern and Central California[J]. Bulletin of the Seismological Society of America, 2008, Vol. 98, No. 2: 709~721
    46 D. M. Boore, W. B. Joyner. Site Amplification for Generic Rock Sites[J]. Bull. Seism. Soc. Am. 1997, 87(2): 327~341
    47 T. C. Hanks. f max[J]. Bull. Seism. Soc. Am. 1982, 71(5):1867~1879
    48 J. G. Anderson, S. E. Hough. A Model for the Shape of the Fourier Amplitude Spectrum of Acceleration at High Frequencies[J]. Bull. Seism. Soc. Am. 1984(5), 74: 1969~1993
    49 N. A. Haskell. Total Energy and Energy Spectral Density of Elastic Wave Radiation from Propagating Faults[J]. Bull. Seism. Soc. Am. 1964(6), 54: 1811~1841
    50 T. C. Hanks, H. Kanamori. A Moment Magnitude Scale[J]. J. Geophys. Res. 1979, 84: 2348~2350
    51刘充,陶夏新.基于随机振动理论的地震动峰值加速度简化衰减关系[C]//.全国首届防震减灾工程学术研讨会论文集. 2004
    52 Kenneth W. Campbell, Yousef Bozorgnia. Campbell-Bozorgnia NGA Ground Motion Relations for the Geometric Mean Horizontal Component of Peak and Spectral Ground Motion Parameters[R]. PEER Report. 2007
    53 David M. Boore, Gail M. Atkinson. Boore-Atkinson NGA Ground Motion Relations for the Geometric Mean Horizontal Component of Peak and Spectral Ground Motion Parameters[R]. PEER Report. 2007
    54 Brian S.-J. Chiou, Robert R. Youngs. NGA Model for Average Horizontal Component of Peak Ground Motion and Response Spectra[R]. PEER Report. 2008
    55 Norman Abrahamson, Walter Silva. Summary of the Abrahamson & Silva NGA Ground-Motion Relations[J]. Earthquake Spectra. 2008(24): 67~97
    56 I. M. Idriss. Empirical Model For Estimating The Average Horizontal Values of Pseudo-Absolute Spectral Accelerations Generated by Crustal Earthquakes[R]. Interim Report Issued for USGS Review. Jan. 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700