用户名: 密码: 验证码:
玉米秸秆直接还田对土壤中氮素生物有效性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用15N标记氮肥和15N标记秸秆,在两种氮素水平土壤上进行盆栽试验,研究不同土壤氮素条件下,短期秸秆腐解过程中的N素固持及释放规律,明确秸秆中的氮素短期能否供给作物吸收利用。同时,考察了长期秸秆还田条件下(始于1981年),土壤氮素的变化趋势及生物再利用可行性,为华北平原的长期秸秆还田后的氮肥管理提供依据。
     盆栽试验设置如下:1)不同土壤氮素水平的秸秆还田盆栽试验,对照(CK)、单施秸秆(9000kg/hm2,S)、中量氮肥处理(150kg/hm2,N1)、高量氮肥处理(300 kg/hm2,N2)、秸秆还田配施中量氮肥处理(N1S)和秸秆还田配施高量氮肥处理(N2S);2)填埋秸秆分解的盆栽试验,填埋秸秆配施中量氮肥处理(N1S填埋)和填埋秸秆配施高量氮肥处理(N2S填埋)。
     本研究主要结论如下:
     1对小麦氮素来源分析得出,氮肥是成熟期小麦氮素的主要来源,且随着施氮量的增加而增加。中等氮肥用量(N1)条件下,高氮素土壤小麦60%以上的吸氮量来自于肥料氮,低氮素土壤则在68%以上;N2处理,高氮素土壤和低氮素土壤成熟期小麦都有75%以上的氮素由氮肥提供;秸秆则提供小麦吸氮量的8%~30%不等,且随着氮肥用量增加,秸秆氮素所占比例下降。单施秸秆(S)处理,秸秆氮素占低氮素土壤成熟期小麦吸氮量的30%,秸秆配施中量氮肥(N1S)处理,秸秆氮素占小麦吸氮量的10%,秸秆配施高量氮肥(N2S)处理,秸秆氮素占7.6%。
     2随着施氮量增加,氮肥的作物回收率下降,土壤残留率也在下降,配施施秸秆后,氮肥作物回收率下降、土壤残留率增加。低氮素土壤N1处理,氮肥作物回收率为41.0%,氮肥残留率为16.9%;N2处理,氮肥作物回收率为34.6%,较N1下降了5.4个百分点,氮肥残留率下降为14.7%;与N1处理相比,N1S处理氮肥作物回收率下降15.7个百分点,残留率则增加15.3个百分点;与N2处理相比,N2S处理氮肥作物回收率下降12.4个百分点,残留率则增加12.2个百分点。高氮素土壤有相似规律。随着氮肥用量的增加,小麦对秸秆氮素利用增加。单施秸秆(S)处理,低氮素土壤小麦利用了秸秆氮素的4.2%,秸秆配施中量氮肥(N1S)小麦利用13.5%的秸秆氮素,秸秆配施高量氮肥(N2S)小麦利用秸秆氮素14.5%。高氮素土壤有相同趋势。
     3施用氮肥和秸秆均增加土壤微生物氮的含量,秸秆配施氮肥处理的微生物氮含量大于单施秸秆和氮肥处理。低氮素土壤,返青期,单施秸秆的微生物氮为32.3 mg/kg,中量氮肥处理微生物氮为35.5 mg/kg,秸秆配施中量氮肥处理则为52 mg/kg。高氮素土壤有相同趋势。通过15N可以区分出微生物氮的来源状况。1)随着施氮量的增加,肥料氮所占微生物氮的比例也在增加。低氮素土壤,成熟期时N1处理有12%的微生物氮来源于氮肥,N2处理则有21%的微生物氮来源于氮肥,高氮素土壤也有相同趋势。2)随着施氮量增加,土壤微生物对秸秆的利用能力增加,同一氮肥水平下,高氮素土壤微生物对秸秆氮素利用程度大于低氮素土壤。单施秸秆(S)处理,返青期,低氮素土壤秸秆和高氮素土壤秸秆分别供应氮素22.5 mg/盆和35.5mg/盆,占施入秸秆氮素的11.1%和17.3%。秸秆配施氮肥后,前期微生物利用秸秆氮素有所增加。N1S处理,返青期,低氮素土壤秸秆和高氮素土壤秸秆分别供应了36.5mg/盆和43mg/盆的氮素,占施入秸秆氮素的17.7%和20.8%。3)土壤氮素是最大的微生物氮源,高氮素土壤供氮能力强于低氮素土壤。N1、N2处理,土壤氮素提供了微生物氮素的75%以上,且随着施氮量增加,土壤供应微生物氮素的量和比例均下降。秸秆配施氮肥没有降低土壤氮素对微生物的供应。高氮素土壤也有相同趋势。
     4秸秆填埋实验表明,秸秆在分解的过程中,对土壤氮素和肥料氮素有固定-释放过程。填埋秸秆在苗期均表现出氮素净固定,在低氮素土壤中量和高量氮肥处理条件下分别固定11.3kg/hm2和20.3kg/hm2,而高氮素土壤为12.0 kg/hm2和22.7 kg/hm2;随后在各生育期氮素释放,成熟期时,低氮素土壤的填埋秸秆在中量氮肥和高量氮肥条件下分别净释放氮素17.5 kg/hm2和8.5 kg/hm2,占秸秆氮素施入量的33.3%和16.2%;而高氮素土壤填埋秸秆净释放氮素22.9kg/hm2和20.9 kg/hm2,占秸秆氮素施入量的43.6%和39.8%。
     5利用华北潮土区长期秸秆还田试验的土壤全氮含量及和土壤微生物氮含量,结合华北潮土区小麦—玉米轮作体系下的氮肥用量调查结果和本论文的盆栽试验研究结果得出:华北潮土区施氮量150 kg/hm2时,秸秆全量还田条件下低氮素土壤可能造成作物减产,需要额外添加氮素;施氮量为300 kg/hm2时,秸秆全量还田不会导致作物减产。
This paper use nitrogen fertilizer and straw labeled by 15N separately to study 1) straw nitrogen mineralization at short time; 2) soil nitrogen and nitrogen bio-availability change under different straw and fertilizer application, then suggest nitrogen application advice
     Pot experiments,1) straw return pot experiment under two different nitrogen soils, including CK, straw return only (S), middle nitrogenous fertilizer application(150kgN/hm2,Nl), high nitrogenous fertilizer application(300kgN/hm2,N2), straw return matched with middle nitrogen application (N1S), straw return matched with high nitrogen application (N2S); 2) straw decomposition pot experiment, including straw return matched with middle nitrogen application (N1S)、straw return matched with high nitrogen application (N2S). Two pot experiments answer the following questions lthe rule of straw-N mineralization and immobilation after straw return, and the utilization extent in a short time; 3) nitrogen change and nitrogen bio-availability after long-term straw return, then suggest nitrogen application advice. The main results are as follows:
     1 15N tracing shows that:1) Fertilizer-N is the main source of wheat nitrogen accumulation in pot experiment. N1 treat, above 60% wheat nitrogen accumulation derive from nitrogen fertilizer in high nitrogen content soil, while above 68% in poor nitrogen content soil. N2 treat, above 75% nitrogen accumulation derive from fertilizer in two soils. Straw nitrogen offer 8%-30%, which decreased with nitrogen application adding. S treat, straw-N offered 30% of nitrogen accumulation, N1S, straw-N offered 10%, N2S,7.6%.
     2 Pot experiment with 15N tracing showed that: N recovery for winter wheat and residual rate in soil decreased with nitrogen application increasing, while N recovery for winter wheat decreased and residual rate in soil increased when nitrogen fertilizer applied with straw. Poor nitrogen content soil, Nl treat, N recovery for winter wheat was 41.0%, residual rate in soil was 16.9%, Compared with N1 treat, N recovery of N2 treat decreased by 5.4percent, residual rate decreased by 2.2 percent.Compared with N1 treat, N recovery of N1S decreased by 15.7 percent. The utilization of straw-N increased with nitrogen application. S treat, wheat use 4.2% of straw-N, N1S,13.5%, while N2S,14.5%.
     3 Nitrogen applications and straw return improved soil microbial biomass nitrogen (SMBN), and the content in high nitrogen soil is higher than that in poor nitrogen soil at the same fertilizer application and straw. S treat, MBN is 32.3mg/kg, N1 treat,35.5mg/kg, N1S 52mg/kg, in poor nitrogen soil. The trend in high nitrogen soil is the same. We can distinguish the source of SMBN by 15N tracing,15N tracing show that:1) fertilizer-N account fod more proportion with nitrogen level increasing. Mature period in poor nitrogen soil,12% SMBN derive from fertilizer-N in Nl treat,21% MBN derive from fertilizer-N in N2 treat.2) soil microbial biomass use more straw-N with nitrogen fertilizer level rising. Microbial biomass in high nitrogen soil use more straw-N than in poor nitrogen soil under the same nitrogen and straw condition. S treat, straw in poor and high nitrogen content soil provide 22.5mg and 35.5mg in returning green stage, account for 11.1% and 17.3%, respectively. When straw applied with middle nitrogen, straw provide 36.5mg and43mg in returning green stage, account for 17.7% and 20.7%, respectively.3) soil nitrogen is the main source of microbial biomass.the proportion decreases with nitrogen fertilizer application.N1 N2 treat, soil-N provide more than 75%.
     4 Straw burying show that:buried straw adsorbed or immobiled and released nitrogen process, seedling stage, buried straw showed net immobilization, straw fixed 11.3kg/hm2 and 20.3kg/hm2 nitrogen under middle and high nitrogen application in poor nitrogen content soil, respectively, while fixed 12.0kg/hm2 and 22.7kg/hm2 in high nitrogen content soil, then released in the following developing period. Harvesting period, buried straw net mineralized 17.5kg/hm2 and 8.5kg/hm2,33.3% and 16.2% of the straw-nitrogen application, respectively, while net mineralized 22.9kg/hm2 and 20.9kg/hm2, accounting for 43.6% and 39.8% of the straw-N, respectively.
     5 This paper choosed soil total nitrogen content and soil micrial bimass nitrogen as index to analyze soil after longterm straw return and nitrogen application, then conbined with nitrogen application in northchina and the results of pot experiment, we found soil need extra nitrogen application under straw return (9000kg/hm2) and middle nitrogen level (150kg/hm2) condition, and soil donot need more nitrogen fertilizer under straw return (9000kg/hm2) and high nitrogen level (300kg/hm2) condition
引文
1. 毕于运,王道龙.中国秸秆资源评价与利用[M].北京:中国农业科学技术出版社,,2008:78~79.
    2. 陈春宏,汪寅虎.秸秆还田条件下提高发酵效率的技术研究,土壤通报,1994,25(7):57~60.
    3. 陈留根,沈明星,姚月明,等.不同有机无机氮比例对水稻产量、品质及环境的影响[J].江苏农业学报,2004,20(4):249~253.
    4. 陈欣,张璐,史奕,等.不同C/N比有机物料中有机碳、氮的分解进程研究Ⅰ:有机N的分解进程及C/N比的变化[J].应用生态学报,2000,11(增刊):21~24.
    5. 陈欣,张璐,史奕,等.不同C/N比有机物料中有机碳、氮的分解进程研究Ⅱ:有机物料及有机碳分解进程[J].应用生态学报,2000,11(增刊):25~27.
    6. 程励励,文启孝,吴顺龄,等.植物物料的化学组成和腐解条件对新形成腐殖质的影响[J].土壤学报,1981,18(4):340~347.
    7. 迟凤琴.黑土中有机物料分解规律的研究[J].黑龙江农业科学,2003(5):6~8.
    8. 党廷辉.用15N标记肥料研究旱地冬小麦氮肥利用率与去向[J].核农学报,2003,17(4):280~285.
    9. 窦森,陈恩凤,须湘成.施用有机肥料对土壤胡敏酸结构特征的影响—胡敏酸的光学性质[J].土壤学报,1995,32(1):41~49.
    10.高利伟.中国作物秸秆养分资源数量估算及其利用状况[J].农业工程学报,2009(7):173~179.
    11.高祥照,马文奇.中国作物秸秆资源利用现状分析[J].华中农业大学学报,2002,21(3):242~247.
    12.郭继勋.羊草草原枯枝落叶分解的研究:枯枝落叶分解与生态环境的关系[J].生态学报1993,13(3):214~220.
    13.韩玮,聂俊华,李飒,等.还田秸秆配施外源纤维素酶效应研究[J].生态环境,2005,14(6):936~940.
    14.韩玮,聂俊华,李飒.外源纤维素酶对秸秆降解速率及土壤速效养分的影响[J].中国土壤与肥料2006(5):28~32.
    15.韩晓日,邹德乙,郭鹏程,等.长期施肥条件下土壤生物量氮的动态及其调控氮素营养的作用[J].植物营养与肥料学报,1996(1):16~21.
    16.韩志卿.长期施肥对土壤有机质氧化稳定性动态变化及其与肥力关系的影响[J].河北农业大学学报,2000,23(3):31~35.
    17.洪春来.秸秆全量直接还田对土壤肥力及农田生态环境的影响研究[J].浙江大学学报(农业与生命科学版),2003,29(6):627~633.
    18.侯志研,杜桂娟,孙占祥,等.玉米秸秆还田培肥效果的研究[[J].杂粮作物,2004,24(3):166~167.
    19.黄昌勇.土壤学[M].北京:中国农业出版社,2000:37~38.
    20.黄东迈,朱培立.有机、无机态肥料氮在水田和旱地的残留效应[J].中国科学,1982(10):907~911.
    21.黄绍敏.施氮对潮土土壤及地下水硝态氮含量的影响[J].农业环境保护,2000,19(4):228~229,241.
    22.黄耀.木质素和氮含量对植物残体分解的影响[J].植物生态学报,2003,27(2):183~188.
    23.姬兴杰,杨颖颖,熊淑萍,等.不同肥料对土壤微生物数量及全氮时空变化的影响[J].中国生态农业学报,2008,16(3):576~582.
    24.金亚放,孙耀琛,柯福源,等.麦秆还田有机氮素对水稻增产的机理[J].上海农业学报,1991,7(2)62~66.
    25.江长胜,杨剑虹,谢德体,等.有机物料在紫色母岩风化碎屑中的腐解及调控[J].西南农业大学学报,2001,23(5):463~467.
    26.金海洋,姚政,徐四新等.秸秆还田对土壤生物特性的影响研究[J],上海农业报,2006,22(1):39~41.
    27.巨晓棠.冬小麦/夏玉米轮作体系中土壤-肥料氨的转化及去向[D].中国农业大学,博士论文,2000.
    28.巨晓棠,刘学军,张福锁.尿素与DCD和有机物料配施条件下氮素的转化和去向[J].中国农业科学2002,35(2):181-186
    29.巨晓棠,刘学军,张福锁.冬小麦/夏玉米轮作体系中土壤氮素矿化及预测[J].应用生态学报,2003,14(12):2241~2245.
    30.劳秀荣,孙伟红,王真.秸秆还田与化肥配合施用对土壤肥力的影响[J].土壤学报,2003,40(4):619~623.
    31.李光中.不同植物残体对土壤有机质累积的初步探讨[J].广西农学院学报,1989,8(3):51-55.
    32.李孝勇,武际,朱宏斌,等.秸秆还田对作物产量及土壤养分的影响[J].安徽农业科学,2003,31(5):870~871
    33.柳敏.有机物料中有机碳和有机氮的分解进程及分解残留率[J].应用生态科学,2007,18(11):2503~2506.
    34.刘守龙,童成立,吴金水,等氮条件下有机无机肥配比对水稻产量的影响探讨[J].土壤学报2007,44(1):106~112.
    35.林心雄,文启孝.广州地区土壤中植物残体的分解速率[J].土壤学报.1985,22(1):47~55.
    36.娄运生,徐本生,杨建堂,等.玉米秸配施氮磷肥对其腐解及潮土供氮磷特性的影响[J].土壤肥料,1998(2):22~25.
    37.鲁彩艳,陈欣.不同施肥处理土壤及不同C/N比有机物料中有机N的矿化进程[J].土壤通报,2003,34(4):268~271.
    38.鲁彩艳.有机碳源添加对不同C/N比有机物料氮矿化进程的影响[J].中国科学院研究生院学报,2004,21(1):108~112.
    39.倪进治.不同施肥处理下土壤水溶性有机碳含量及其组成特征的研究[J].土壤学报,2003,40(5):724~730.
    40.牛灵安.曲周试区秸秆还田配施氮磷肥的效应研究[J].土壤肥料,1998(6):32~35.
    41.欧杨虹.有机氮部分替代无机氮对水稻产量和氮素利用率的影响[J].江苏农业学报,2009,25(1):106~111.
    42.庞欣,张福锁,王敬国.不同供氮水平对根际微生物量氮及微生物活度的影响[J].植物营养与肥料学报.2000,6(4):476~480
    43.任顺荣.不同施肥处理对土壤团聚体和硝态氮含量的影响[J].天津农业科学,2006,12(2):50~52.
    44.任祖惍,陈玉水,唐福钦,等.有机肥无机肥配施对土壤微生物和酶活性的影响[J].植物营养与肥料学报,1996,2(3):279~283.
    45.史奕.不同有机物料在潮棕壤中有机碳分解进程[J].生态环境,2003,12(1):56~58.
    46.沈裕琥,黄相国,王海庆.秸秆覆盖的农田效应[J].干旱地区农业研究,1998,16(1):45~50.
    47.孙本华.干旱荒漠条件下残茬分解特征和养分释放的研究[J].干旱地区农业研究,2003,21(3):34~37.
    48.汤树德,王风书.秸秆还田的原理及应用[M].北京:北京农业大学出版社,1993:189~221.
    49.唐玉霞,孟春香,贾树龙,等.不同碳源物质对土壤无机氮生物固定的影响[J].河北农业科学,2004,8(2):6~9.
    50.唐玉霞,孟春香.不同C/N比肥料组合对肥料氮生物固定、释放及小麦产量的影响[J].中国生态农业学报,2007,15(2):37~40.
    51.王爱玲,高旺盛.秸秆直接还田的生态效应[J].中国农业资源与区划,2000,21(2):41~45.
    52.王淑平.添加玉米残体对土壤-植物系统中氮素转化的影响[J].应用生态学报2004,15(3):449~452.
    53.王维敏.麦秸、氮肥与土壤混合培养时氮素的固定、矿化与麦秸的分解[J].土壤学报,1986,23(2):98~104.
    54.王岩.施用有机、无机肥后土壤微生物量、固定态按的变化及其有效性研究[J].植物营养与肥料学报,1997,3(4):07~314.
    55.王艳杰.土壤氮素矿化研究进展[J].中国农业学报,2005,21(10):203~207.
    56.王志明.14C、15N双标记秸秆对土壤微生物量碳、氮动态变化的影响[J].江苏农业学报,1999,15(3):173~176.
    57.王志明.淹水土壤中秸秆氮素的转化[J].江苏农业学报,2001,17(4):236~240.
    58.吴崇海,李振金.高留麦茬的整体效应与配套技术研究[J].干旱地区农业研究,1996,14(1):43~48.
    59.吴菲.玉米秸秆连续多年还田对土壤理化性状和作物生长的影响[D].中国农业大学硕士学位论文,2005.
    60.吴景贵.玉米植株残体培肥土壤的研究[J].土壤学报,2006,43(2):300~305.
    61.武志杰,张海军,许广山,等.玉米秸秆还田培肥土壤的效果[J].应用生态学报,2002,13(5):539~542.
    62.须湘成,张继宏,汪景宽,等.不同有机物料的腐解残留率及其对土壤腐殖质组成和光学性质响[J].土壤通报,1993,24(2):53~56.
    63.徐祖祥.连续秸秆还田对作物产量和土壤养分的影响[J].浙江农业科学,2003(1):22~23.
    64.姚政.施用不同有机物后土壤微生物量的动态变化[J].上海农业学报,1997,13(1):47~48.
    65.杨文钰,王兰英.作物秸秆还田的现状与展望[J].四川农业大学学报,1999,17(2):211~216.
    66.俞慎,李振高.熏蒸提取法测定土壤微生物量研究进展[J].土壤学进展,1994,22(6):42~50.
    67.俞慎,李勇,王俊华,等.土壤微生物生物量作为红壤质量生物指标的探讨[J]。土壤学 报,1999,36(3):413~422
    68.袁家富.麦田秸秆覆盖效应及增产作用[J].生态农业研究,1996,4(3):61~65.
    69.曾木祥,金维续.华北地区麦秸还田的适宜条件[J].土壤肥料,1995(4):31~36.
    70.曾木祥,张玉洁.秸秆还田对农田生态环境的影响[J].农业环境与发展,1997(1):1~7.
    71.张电学,韩志卿.长期不同施肥制度下土壤有机质质量动态变化规律[J].土壤通报,2007,38(2):251~257.
    72.张夫道.长期施肥条件下土壤养分的动态和平衡Ⅱ:对土壤氮的有效性和腐殖质氮组成的影响[J].植物营养与肥料学报,1996,2(1):39~48.
    73.张娟,沈其荣,张亚丽,等.施用预处理稻秆的土壤供氮特征及对冬小麦氮吸收的影响[J].植物营养与肥料学报,2004,10(1):24~28.
    74.张丽娟,刘树庆,李彦慧,等.栗钙土有机物料的腐解特征及土壤有机质调控,2001,32(5):202-206.
    75.张庆忠,吴文良,林光辉.小麦秸秆还田对华北高产粮区碳截留的作用[J].辽宁工程技术大学学报,2006,25(5):773~776.
    76.张振江.长期麦秆直接还田对作物产量与土壤肥力的影响[J].土壤通报,1998,29(4):154~155.
    77.郑立臣.秸秆不同还田方式对土壤中溶解性有机碳的影响[J].生态环境,2006,15(1):80~83.
    78.郑立臣,解宏图,何红波,等.秸秆还田对水溶性有机碳的影响[J].辽宁工程技术大学学报,2006(25):330~332.
    79.周建斌,陈竹君,李生秀.土壤微生物量氮含量、矿化特性及其供氮作用[J].2001,21(10):1721-1728
    80.周凌云,周刘宗,等.农田秸秆覆盖早地棉田少耕培肥效果[J].生态农业研究,1996,4(3):49~52.
    81.朱培立.土壤水湿状况和肥料碳氮比对稻田肥料氮素转化的影响[J].土壤学报,1986,23(3):251~261.
    82.朱培立,王志明,黄东迈,等.无机氮对土壤中有机碳矿化影响的探讨[J].土壤学报,2001,38(4):457~463.
    83. Amwarzay M O, Blum W E H,Strauss P, et al. Biological activity in soil in an 80-year long-term field experiment [J]. Foerderungsdienst,1990,38:18~22.
    84. Aoyama M, Nozawa T. Microbial biomass nitrogen and mineralization-immobilization processes of nitrogen in soils incubated with various organic materials [J]. Soil Sci Plant Nutr,1993,39: 23~32.
    85. Brookes P C,Landman A,Pruden G,et al.Chloroform fumigation and the release of soil nitrogen:A rapid direct extraction method for measuring microbial biomass nitrogen in soil. Soil Biol Biochem,1985,17:837~842
    86. Douglas C L Jr, Rickman R W. Estimating crop residue decomposition from air temperature, initial nitrogen con-tent, and residue placement [J]. Soil Sci. Soc. Am. J.,1992,44:833~837.
    87. Franchini J C, Gonzalez-Vila F J, Cabrera F, et al. Rapid transformations of plant water-soluble organic compounds in relation to cation mobilization in an acid oxisol [J]. Plant Soil, 2001(231):55~63.
    88. Glendining M J, Powlson D S, Poulton P R, et al. The effects of long-term application of inorganic nitrogen fertilizer on soil nitrogen in the Broadbalk Wheat Experiment [J]. J. Agri. Sci. (Camb.),1996,127:347~363.
    89. Gregorich E G, Liang B C, Drury C F, et al. Elucidation of the source and turnover of water soluble and microbial biomass carbon in agricultural soils [J]. Soil Biol. Biochem, 2000(32):581~587.
    90. Guo J X, Jiang S C, Ren B Z. A study on the decomposition of Aneurolepidium chi-nensestanding dead litter in Songnen grassland[J]. Acta Ecologica Sinica (in Chinese),2000, 20(5):784~787.
    91. Hassink J. Effect of soil texture on the size of the microbial biomass and on the amount of C and N mineralize per unit of microbial biomass in Dutch grassland soil [J]. Soil Biol. Biochem.,1994, 26:1573~1581.
    92. Hassink J. Density fractions of soil macroorganic matter and microbial biomass as predictor as of C and N mineral-ization [J]. Soil Biol. Biochem.,1995,27:1099~1108.
    93. Hirose S. Mineralization of organic nitrogen of various plant residues in the soil under upland conditions [J]. J Sci Soil Manure Jpn,1973,44:157~163.
    94. Jenkinson D S, Rayner J H. The turnover of soil organic matter in some of the Rothamsted elassical experiments [J]. Soil Sei.1977,123(5):298~305.
    95. Henriksen T M, Breland T A. Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil [J].Soil Biol.Biochem.1999,31:1121~1134.
    96. Ichir L L, Ismaili M, Hofman G. Recovery of N labeled wheat residue and residual effects of N fertilization in a wheat-wheat cropping system under Mediterranean conditions [J]. Nutri. Cyc. Agro,2003,66:201-207.
    97. Jensen E S. Dynamics of mature pea residue nitrogen turnover in unplanted soil under field conditions [J].Soil Biol.Biochem,1994,26:455~464.
    98. Jenkinson D S, Powlson D S. The effects of biocidal treatments on metabolism in soil: V A method for measuring soil biomass [J]. Soil Biol Biochem.,1976,8:209~213.
    99. Jenkinson, D. S. Studies on the decomposition of plant material in soil, plant cover and soil types on the lonss of carbon froml4C labelled ryegcass decomposing under field conditions. [J]. J. Soil. Sci.,1997,28:424~434.
    100. Jensen L S, Mueller T, Magid J, et al. Temporal variation of C and Nmineralization, microbial biomass and extractable organic pools in soil after oilseed rape straw incorporation in the field [J].Soil Biol.Biochem.1997 (29):1043~1055.
    101. Kirsehbaum M. F., The temperature dependence of organic matter and the effect of global warming on organic storage [J]. Biol.1995,17(6),753~760.
    102. Ladd J N, Oades J M, Amato M. Microbial biomass formed from14C,15N-labeled plant material decomposing in soils in the field [J]. Soil Biol.Biochem.1983,15:375~376.
    103. Lloyd J., Taylor J.A. On the temperature dependence of soil respiration [J]. Functional Ecology. 1994,8,315~323.
    104. Lynch J M, Whipp J M. Substrate flow in the rhizosphere [J]. Plant and Soil,1990,129:1~10.
    105. Mary B, Recous S, Darwis D, Robin D. Interactions between decomposition of plant residues and nitrogen cycling in soil [J]. Plant and Soil.1996,181(1):71~82.
    106. McGill W B, Camnon K R, Robertson J A, Cook F D. Dynamic of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to two rotations [J]. J. Soil Sci., 1986,66:1~19.
    107. Mishra B, Sharma P K, Bronson K F. Decomposition of rice straw and mineralization of carbon, nitrogen, phosphorus and potassium in wheat field soil in western Uttar Pradesh [J]. J. Indian Soc. Soil Sci.2001,49:419~424.
    108. Molina, et al. NCSOIL a model of nitrogen and carbon transformations in soils:description, calibration, behavior [J]. Soil Sci Soc Am J,1983,47:85~91.
    109. Murayama, S. Decomposition kinetics of straw saccharides and synthesis of microbial saccharides under field conditions [J]. Journal of Soil Science,1984,35:231~242.
    110. Nishio T, Komada M, Arao T, Kanamori T. Simultaneous determination of transformation rates of nitrate in soil [J]. Japan Agricultural Research Quarterly,2001,35:11~17.
    111. Ocio J A, Martine Z J, Brookes P C. Contribution of straw-derived N to total microbial biomass N following incorporation of cereal straw to soil [J]. Soil Biol Biochem,1991,23:655~669.
    112. Ocio JK, Brooks PL, Jenkinson DS. Field incorporation of straw and its effects on soil microbial biomass and soil inorganic N [J]. Soil Biochem.1991,23:171~186.
    113.Parton W.J., Stewart J.W.B., Cole C.V, et al. Simulating regional Patterns of soil C, N, P dynamics in the US central grasslands region [J]. Ecology of Arable land,1989:99~108.
    114. Powlson D S, Jenkinson D S, Pruden G, et al. The effect of straw incorporation on the uptake of nitrogen by winter wheat [J]. Sci. Food Agri.,1985,36:26~30.
    115. Shen S M, Hart P B S, Pruden G, et al. The nitrogen cycle in the Broadbalk Wheat Experiment: 15N-labelled residues in the soil and in the soil microbial biomass [J]. Soil Boil. Boichem.1989, 21:529~533.
    116. Sinha M K, Sinha D P, et al. Organic matter transformation in soils:V.Kinetics of carbon and nitrogen mineralization in soils amended with different organic materials [J]. Plant and Soil, 1977,46:579~590.
    117. Sorensen L H. The influence of clay on the rate of decay of amino acid metabolites synthesized in soil during decomposition of cellulose [J]. Soil Biol.Biochem.1975,7(2):171~177.
    118. Stevenson F C, et al.Direct vs indirect nitrogen-15 approaches to estimate nitrogen contributions from crop residues [J]. Soil Sci. Soc. Am. J.,1998,62:1327~1334.
    119. Vance ED,Brookes PC,Jenkinson DS.An extraction method for measuring soil microbial biomass C.Soil Biol Biochem,1987,19:703~707
    120. Yadvinder, Bijay, Timsina J. Crop residue management for nutrient cycling and improving soil productivity in rice-based cropping systems in the tropics [J]. Adv. Agron,2005,85:269~407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700