用户名: 密码: 验证码:
微流控芯片注射成型脱模系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
注射成型是生产聚合物微流控芯片的主要技术之一。脱模作为注射成型的一个重要阶段,在很大程度上决定着微流控芯片的最终成型质量。脱模系统设计不合理、工艺参数选择不当都有可能使芯片出现拉断、变形甚至毁坏等缺陷。本文以翘曲量和脱模应力作为衡量微流控芯片脱模质量的指标,对其脱模过程进行系统深入分析,设计合理的微流控芯片脱模系统以提高脱模质量,主要研究工作如下:
     首先为提高微流控芯片脱模质量,对其脱模过程进行深入的分析,仿真研究了微流控芯片的热收缩应力及脱模应力的分布规律,并针对微流控芯片脱模过程出现的受力不均的现象设计了三种顶杆脱模方案,仿真研究了三种脱模方案下微流控芯片脱模应力的变化规律。研究表明随着顶杆数目的增多,微流控芯片的脱模应力逐渐降低,但过多的使用顶杆可能会与模具的冷却系统发生干涉,根据以上研究成果,将透气钢作为脱模介质,研制微流控芯片的自动无损脱模系统,为验证透气钢作为气动脱模介质的可行性提供一个实验平台。
     其次,在仿真研究的基础上实验研究脱模温度对微流控芯片翘曲量的影响规律,随着模具温度的增加,微流控芯片的脱模应力逐渐降低,但翘曲量逐渐增加,在模具温度为90℃时会出现芯片拉断现象。研究结果建议选取微流控芯片的最佳的脱模温度范围为70-80℃。
     最后实验评价分析了微流控芯片在顶杆脱模系统和基于透气钢的气动脱模系统下的脱模质量优劣性。采用相同的工艺条件,对比两种脱模方式下成型盖片的翘曲量,实验表明基于透气钢的气动脱模系统可以有效的降低盖片的翘曲量,和顶杆脱模系统下的盖片比较,其降幅可最大达到38%。
Injection molding is one of the most important methods to produce microfluidic chip. As an important stage in injection molding, demolding determines the final quality of formed components to a great extent. Microfluidic chip may be fractured, deformed and even destroyed in the demolding process, if demolding system is designed improperly or unsuitable process parameters are chosen. The main work carried out in this paper, as listed below, aims to devise a better micro-fluidic chip demolding system after an in-depth and systematic analysis of the demolding process by taking the chip warpage and demolding stress as the measuring indexes of demolding quality.
     Firstly, in order to improve the demolding quality of injection molded parts, an in-depth analysis of micro-fluidic chip demolding process was done and thermal shrinkage and demolding stress distributions were obtained through numerical simulation. Three different demolding setups using ejector pins were designed to improve the uniformity of demolding force distribution. Variation patten of demolding stress in the three setups was studied. Results revealed that an increase in the number of ejector pins leads to a decrease of demolding stress but also causes worse surface quality and even an interference between ejector pins and cooling channels. Based on the above results, an automatic non-destructive demolding system integrating porous steel as media was developed, which served as a platform to verify the feasibility of porous steel as a pneumatic demolding media.
     Secondly, based on numerical simulation results, injection molding experiments were performed to study the influence of demolding temperature on the chip warpage. It was observed that the increase of demolding temperature leads to a gradual decrease of demolding stress and a gradual increase of warpage, and that fracture occurred at a mold temperature of 90℃.According to the results, the optimum temperature is suggested to be within 70-80℃.
     Finally, ejector pin demolding and pneumatic demolding were compared in terms of chip demolding quality through experiments under the same processing conditions, in which the warpage of molded covers ejected by those two demolding mechanisms was compared. Results indicated that porous steel based pneumatic demolding is effective in reducing warpage of the cover by as much as 38% compared to ejector pin demolding.
引文
[1]林炳承,秦建华.微流控芯片实验室[M].北京:科学出版社,2006.1-2.
    [2]Khandurina J, Guttman A. Bioanalysis in microfluidic devices[J]. Journal of Chromatography A,2002,943(2):159-183.
    [3]Usama M. Attia, Silvia Marson, Jeffrey R.Alcock.Micro-injection moulding of polymer microfluidic devices[J]. Microfluidics and Nanofluidics,2009,7(1):1-28.
    [4]R.Ruprcht, T.Gietzelt, K.Muller, et al. Injection molding of microstructrued components from plastics, Melts and Ceramics[J]. Microsystem Technologies, 2002,8(5):351-358.
    [5]Song S, Lee K.Y. Polymers for Microfluidic Chips[J]. Macromol Res,2006,14(2):121-128.
    [6]Guber A E, Heckele M, Herrmann D, et al. Microfluidic lab-on-a-chip systems based on polymers—fabrication and application[J]. Chemical Engineering Journal,2004,101(1):447-453.
    [7]He Q. H, Chen S, Su Y, et al. Fabrication of 1D nanofluidic channels on glass substrate by wet etching and room-temperature bonding [J]. Analytica Chimica Acta,2008,628(1):1-8.
    [8]Lai S Y. Design and fabrication of polymer-based microfludic platforms for biomedical applications[D].Doctor Philosophy of Ohio State University, Columbus, Ohio USA,2003.
    [9]Fan Z H, Harrison D J. Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections[J]. Analysis Chemistry,1994,66(1):177-184.
    [10]王立顶,刘军山,于建群.集成毛细管电泳芯片研究进展[J].大连理工大学学报,2003,43(4):385-392.
    [11]殷学锋,方群,凌云杨.微流控分析芯片的加工技术[J].现代科学与仪器,2001,18(4):10-14.
    [12]Sun Xiuhua, Peeni B, Yang Weichun,et al. Rapid prototyping of poly(methyl methacrylate) microfluidic systems using solvent imprinting and bonding[J]. Journal of Chromatogr A,2007,1162(2):162-166.
    [13]王晓东,刘冲,马骊群,等.聚合物微流控芯片的制作及其自动化[J].高技术通讯,2004,(7):45-48.
    [14]Jung W.C, Heo Y.M, Yoon G.S,et al. Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips[J]. Sensors,2007, (7):1643-1654.
    [15]Juang Y.J. Polymer processing and rheological analysis near the glass transition temperature[D]. Ohio:The Ohio State University,2001.
    [16]Martynova L, Locascio L E, Gaitan M, et al. Fabrication of plastic microfluid channels by imprinting methods[J]. Anal Chem,1997,69(2):4783-4789.
    [17]Jaszewski R.W, Schift H, Gobrecht J, et al. Hot embossing in polymers as a direct way to pattern resists[J]. Microelectron Eng,1998,41(2):575-578.
    [18]Lee GB, Chen S.H, Huang GR, et al. Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection [J]. Sens Actuators B,2001,75(2):142-148.
    [19]贺永,傅建中,陈子辰.聚合物微流控芯片热压成型的建模研究[J].浙江大学学报(工学版),2005,39(12):1911-1914.
    [20]杜晓光,关艳霞,王福仁,等.聚甲基丙烯酸甲酯微流控分析芯片的简易热压制作法[J].高等学校化学学报,2003,24(11):1962-1966.
    [21]BECKER H, GARTNER C. Polymer microfabrication technologies for microfluidic systems[J]. Anal Bioanal Chem,2008,390(1):89-111.
    [22]蒋炳炎,沈龙江,彭华建.微注射成型中变模温控制技术[J].中国聚合物,2006,20(3):99-102.
    [23]Loke Y.W, Tor S.B, Chun J.H, et al. Micro Injection-Molding of Cyclic Olefin Copolymer Using Metallic Glass Insert[J]. Manuf Syst Technol,2007,12(1):35-38.
    [24]C. A. Griffiths, S. S. Dimov, E. B. Brousseau. Investigation of surface treatment effects in micro-injection-moulding[J]. The International Journal of Advanced Manufacturing Technology,2010,47(4):99-110.
    [25]Mair D.A, Geiger E, Pisano A.P, et al. Injection molded microfluidic chips featuring integrated interconnects[J]. Lab Chip,2006,(6):1346-1354.
    [26]Lee L.J, Madou M.J, Koelling K.W, et al. Design and Fabrication of CD-Like Microfluidic Platforms for Diagnostics:Polymer-Based Microfabrication[J]. Biomed Microdevices,2001,3(4):339-351.
    [27]Brenner T, Gottschlich N, Knebel G., et al. Injection molding of microfluidic chips by epoxy-based master tools [C].Proceedings of the 9th International Conference on Miniaturized Systems for Chemistry and Life Sciences.Boston, Massachusetts, USA,2005:193-195.
    [28]杨芯苹.应用于微流体组件之微射出成型研究[D].中国台湾:国立成功大学, 2003.
    [29]Shen Yungkang, Wu Chiwei, Yu Yafeng, et al. Analysis for optimal gate design of thin-walled injection molding[J]. Int Commun Heat Mass Transfer, 2008,35(6):728-734.
    [30]S Kwak, T Kimh, S Park, et al. Layout and sizing of ejector pins for injection mould design using the wavelet transform[J]. Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture,2003, 217(4):463-473.
    [31]M.Worgull, J.-F.HETU, K.K.Kabanemi, et al. Hot embossing of microstructures: characterization of friction during demolding[J]. Microsystem Technologies, 2008,14(6):767-773.
    [32]Yuhua Guo, Gang Liu, Yin Xiong, et al. Study of the demolding process—implications for thermal stress, adhesion and friction control [J]. Journal of Micromechanics and Microengineering,2007,17(1):9-19.
    [33]Zhichao Song. Study of demolding process intermalimprint lithography via numerical simulation and experimental approaches[D].USA:Louisiana State University,2007.
    [34]G.Fu, S.B.Tor, N.H.Loh, et al. The demolding of powder injection molded micro-structures:analysis, simulation and experiment[J]. Journal of Micromechanics and Microengineering,2008,18(7):1-12.
    [35]沈龙江.微透镜阵列注射成型复制度评价与工艺参数优化[D].长沙,中南大学,2007.
    [36]Walter Michaeli, Ralf Giirtner. New demolding concepts for the injection molding of microstructures[J]. Journal of Polymer Engineering 2006, 26(2):161-177.
    [37]Omar M, Bataineh, Barney E, Klamecki. Prediction of Local Part-Mold and Ejection Force in Injection Molding[J]. Journal of Manufacturing Science and Engineering,2005,127(3):598-603.
    [38]Bill D. Porous steel improves mold venting[J]. Modern Machine Shop,2001, 74(7):64-65.
    [39]Witold N, Joachim J. N, Richard M. U, et al. Cooling tube with porous insert: US, US6737007B2[P],2004-5-18.
    [40]Hyun J. K. Mold for making golf balls and methods for using it:US, US6776942 B2[P],2004-8-17.
    [41]Yutaka M, Jun M. Molding system and related method using a side-gated injection mold with vacuum assist and resulting blow molded article:US, US2002/0179613A1 [P],2002-12-5.
    [42]莫德斯托.M.佩萨文托.加工预制坯的方法和装置:中国,CN 1646289A[P],2005-7-27.
    [43]Witold N, Joachim J. N, Richard M. U, et al. Injection mold cooling tube with porous insert:US,US6951453B2[P],2005-10-4.
    [44]Witold N, Shahid O. A, Zbigniew R. Post-molding molded article conditioning apparatus with a selectively controlled transfer flow structure:US, US7252497B2[P],2007-8-7.
    [45]Noriyuki N, Toshiyuki N, Kawakami, et al. Process for producing optical element:US,4985186[P],1991-1-15.
    [46]申瑞霞.基于透气钢的微流控芯片气动吸脱模系统实验研究[D].长沙,中南大学,2009.
    [47]班旗,周煌煌.浅谈精密注塑[J].中国聚合物,1999,13(8):61-65.
    [48]王承鹤.聚合物摩擦学—聚合物的摩擦、磨损、润滑理论与实践[M].北京:机械工学出版社,1994.153-220.
    [49]Tetsuo Sasaki, Nobuhiro Koga, Kenji Shirai, et al. An experimental study on ejection forces of injection molding[J]. Journal of the International Societies for Precision Engineering and Nanotechnology,2000,24(3):270-273.
    [50]P.A. Dearnley. Low friction surfaces for plastic injection moulding dies—an experimental case study[J]. Wear,1999,225(2):1109-1113.
    [51]王喜顺,彭玉成.注射成型中冷却阶段的研究[J].模具工业,1999,(4):40-44.
    [52]唐志玉.大型注塑模设计基础[M].成都:四川科技大学出版社,1987.8-16.
    [53]刘斌,乐燕.影响注塑制件脱模的因素分析及对策[J].聚合物工业,2007,35(12):32-35.
    [54]李海梅,申长雨.注射成型及模具设计实用技术[M].北京:北京化学工业出版社,2002.50-200.
    [55]金日光,华幼师.高分子物理[M].北京:化学工业出版社,1991.165-179.
    [56]ZHANG P, LIU G, TIAN Y C, et al. The properties of demoulding of Ni and Ni-PTFE moulding inserts[J]. Sensors Actuators A,2005,118(2):338-341.
    [57]贺永,傅建中,陈子辰.微热压成型脱模缺陷分析及其脱模装置的研究[J].机械工程学报.2008,39(2):1-6.
    [58]Kojima M, Narahara H, Suzuki H, et al.Injection mould with permeability utilised metal laser sintering combined with high speed milling[J]. International Journal of Precision Technology,2007,1(1):55-64.
    [59]刘军,陈志刚.Al2O3基高强度透气性陶瓷材料的研制[J].机械工程材料,2004,28(12):17-19.
    [60]周照耀,李元元,夏伟,等.自透气性金属模具及其制造方法和应用:中国,CN1907642A[P],2007-2-7.
    [61]吴铮强,王军.透气钢的制备方法以及在聚合物模具中的应用研究[J].广东轻工职业技术学院学报,2007,6(3):9-12.
    [62]詹添印,林舜天,李晋升.透气式模具钢材之制造方法:中国,CN1757467[P],2006-4-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700