用户名: 密码: 验证码:
Sr_2Mn_(1-x)Ga_xMoO_6及Sr_2FeMoO_6/La_(0.67)Sr_(0.33)MnO_3的制备、晶体结构和电磁性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,人们发现双钙钛矿型化合物Sr2FeMoO6、Sr2FeRe06具有高的子自旋极化率、高的居里温度和室温低场巨磁阻效应,从而使它们成为了最有可能在室温下应用的磁阻材料之一,也进一步激发了人们对有序的双钙钛矿化合物A2BB'O6的研究热情。本文采用固相反应法、溶胶-凝胶法和物理共混法制备了Sr2FeMoO6、掺杂体系的Sr2Mn1-xGaxMoO6以及复合系的Sr2FeMoO6/La0.67Sr0.33MnO3化合物,通过XRD、SEM、AFM、PPMS等测量手段对所制备样品的晶体结构、磁特性进行了系统的研究,得到了如下主要结论:
     (a)分别采用固相反应法和溶胶-凝胶法制备了多晶Sr2FeMoO6化合物。XRD分析表明,固相反应法的前驱体包含SrMoO4和SrFeO3-x两种物相,Sr2FeMoO6是由这两种前驱体反应获得;而溶胶-凝胶制备的前驱体中已有Sr2FeMoO6物相形成,通过烧结可去除前驱体中的SrMoO4和Sr3MoO6杂相。通过研究烧结温度和有序度的关系,我们发现烧结温度的提高可有效提高有序峰的强度比值,即有序度得到增强。结构精修分析表明由两种制备方法获得的样品都为四方结构,空间群为I4/m,B/B'位阳离子占位率都大于90%。SEM表征发现溶胶-凝胶获得的样品颗粒均匀,而固相法制备的样品颗粒分布范围较大。
     (b)采用固相反应法制备了B位掺杂化合物Sr2Mn1-xGaxMoO6(x=0.0-1.0)。XRD分析表明,Sr2MnMoO6具有单斜晶体结构,空间群为P21/n。Ga的掺杂没有改变化合物的晶体结构,但衍射峰整体向高角度漂移。结构精修分析表明,Sr2Mn1-xGaxMoO6(x=0.0-1.0)样品的晶胞体积随Ga含量的增加而逐渐减小;同时,B/B'位离子占位有序度伴随Ga的掺入而逐渐降低;此外,Ga的引入导致键长的缩短,键长的伸长。
     (c)采用物理共混方法制备了Sr2FeMoO6/xLa0.67Sr0.33MnO3(x=0.1-0.5)复合体系。晶体结构分析表明,随着复合量x的增加Sr2FeM006和La0.67Sr0.33MnO3的晶体结构并没有改变,两相是各自以独立相的形式存在的。磁测量发现,随着复合量x的增加,饱和磁化强度Ms呈线性增加趋势,阻率急剧增加几个量级,低场磁阻达到了14.2%,即磁性La0.67Sr0.33MnO3的复合有效地提高了样品的磁阻。
The high degree of spin polarization、high Curie temperature and giant magnetoresistance in low magnetic fields at room temperature have recently been reported in Sr2FeMoO6、Sr2FeReO6with double perovskite structure, which makes them as good candidates for the application of giant magnetoresistance at room temperature. These findings are further attracting considerable interest to the research of ordering double perovskite A2BB'O6 compound. The Sr2FeMoO6 compounds, Sr2Mn1-xGaxMoO6 compounds and Sr2FeMoO6/La0.67Sr0.33MnO3 composites have been prepared by sol-gel method、solid state method and physically mixed processes. Crystal structure、magnetic and electrical-transport properties of these samples have been investigated by XRD, SEM, AFM, PPMS, etc. Conclusions from our research are shown as follows:
     (a) Polycrystalline samples of Sr2FeMoO6 are synthesized by two different methods:solid state method and sol-gel method. The analysis of XRD indicates that two precusor phases SrMoO4 and SrFeO3-x are acquired by solid state method, and the formation of Sr2FeMoO6 is via the reaction of these two precursor phases; and however by sol-gel method, precusor phases include Sr2FeMoO6, and minor phases SrMoO4 and Sr3MoO6 can be removed after sintering. Through investigating the relation between the sintered temperature and degree of ordering, we found the ratio of intensity of the ordering profile would increase under higher sinterted temperature. In other words, the degree of ordering will be improved. The analysis of structural refinement indicates that both samples are tetragonal, space group isⅠ4/m and the occupancy of cation in the sites is more than 90%. According to SEM, grain size of the sol-gel method-made samples is homogeneous; however, grain size of solid-state method-made sample has large range of distribution.
     (b) The B-site doped Sr2Mn1-xGaxMoO6(x=0.0-1.0) compounds are prepared by solid state method. A room temperature analysis of high-resolution X-ray powder diffraction patterns indicates that Sr2MnMoO6 compound crystallize in the monoclinic space group P21/n; crystal structure is not changed by the Ga doping, but the whole X-ray powder diffraction profiles shift to higher 2θdegree. The structural refinement has shown that unit cell volume of Sr2Mn1-xGaxMoO6 (x=0.0-1.0) compounds decreases with the Ga concentration; B/B' site cationic ordering also decreases by Ga doping; the introduction of Ga leads to extension of bond and shrinkage of bond .
     (c) Sr2FeMoO6/xLa0.67Sr0.33MnO3(x=0.1-0.5) composites are prepared by physically mixed processes. The analysis of crystal structure indicates that both structures of these two phases:Sr2FeMoO6 and La0.67Sr0.33MnO3, are not changed dependent on the amount of La0.67Sr0.33MnO3, and these two phases are existed separately. The electromagnetic measurement of the composite system shows that the strength of the samples' saturation magnetization increases with the increase of x, and the ratio of resistance will increase in magnitude, with its magnetoresistance in low magnetic fields up to 14.2%. This proved that the introduction of magnetic La0.67Sr0.33MnO3 phase can enhance magnetoresistance effectively.
引文
[1]R. A. de Groot, F. M. Mueller, P. G. van Engen, et al, New class of materials: half-metallic ferromagnets, Phys. Rev. Lett,1983,50:2024-2927
    [2]K.-I. Kobayashi, T. Kimura, H. Sawada, et al, Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature,1998,395:677-680
    [3]W. E. Pcikett and J. S. Moodera, Half metallic magnets, Phys. Today,2001,54: 39-44
    [4]J. M. D. Coey, A. E. Berkowitz, L. Balcells, et al, Magnetoresistance of chromium dioxide powder compacts, Phys. Rev. Lett,1998,80:3815
    [5]K. Schwarz, CrO2 predicted as a half-metallic ferromagnet, J. Phys. F:Met. Phys,1986,16:L211
    [6]J. J. Versluijs, M. A. Bari, and J. M. D. Coey, Magnetoresistance of half-metallic oxide nanocontacts, Phys. Rev. Lett,2001,87,026601
    [7]M. B. Salamon and M. Jaime, The physics of manganites:structure and transport, Rev. Mod. Phys,2001,73:583-628
    [8]J. M. D. Coey, M. Viret and S. von Molnar, Mixed valence manganites, Adv. Phys.1999,48:167
    [9]E. Dagotto, T. Hotta, A. Moreo, Phys. Rep,2001,344:1-153
    [10]J. H. Park, E. Vescovo, H. J. Kim, et al, Direct evidence for a half-metallic ferromagnet, Nature,1998,392:794
    [11]S. Jin, T. H. Tiefel, M. McCormack, et al. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-0 films. Science,1994,264:413-415
    [12]焦正宽、曹光旱.磁子学.浙江大学出版社.2005
    [13]D. Serrate, J. M. D. Teresa, and M. R. Ibarra. Double perovskites with ferromagnetism above room temperature, J. Phy.:Condens. Matter,2007,19: 1-86
    [14]L. Balcells, J. Navarro, M. Bibes, et al, Cationic ordering control of magnetization in Sr2FeMoO6 double perovskite, Appl. Phys. Lett.2001,78: 781-783
    [15]M. T. Anderson, K. B. Greenwood, G. A. Taylor and K. R. Poppelmeier, B-cation arrangements in double perovskites, Prog. Solid State Chem,1993,22: 197-233
    [16]C. L. Yuan, Y. Zhua, P. P. Onga, et al. Grain boundary effects on the magneto-transport properties of Sr2FeMoO6 induced by variation of the ambient H2-Ar mixture ratio during annealing, Phys. B,2003,334:408-412
    [17]D. D. Sarma, P. Mahadevan, T. Saha-Dasgupta, et al. Electronic structure of Sr2FeMoO6, Phys. Rev. Lett,2000,85(12):2549-2552
    [18]T. Saha-Dasgupta, Ab initio study of disorder effects on the electronic and magnetic structure of Sr2FeMoO6, Phys. Rev. B,2001,64:0644081-0644086
    [19]C. Ritter, M. R. Ibarra, L. Morellon, et al, Structural and magnetic properties of double perovskites AA'FeMoO6 (AA'=Ba2, BaSr, Sr2 and Ca2), J. Phys: Condens. Matter 2000,12:8295-8308
    [20]O. Chmaissem, R. Kruk, B. Dabrowski, et al. Structural phase transition and the electronic and magnetic properties of Sr2FeMoO6, Phys. Rev. B,2000,62: 14197-14206
    [21]Y. Yasukawa, J. Linden, T. S. Chan, et al. Iron valence in double-perovskite (Ba, Sr, Ca)2FeMoO6:isovalent substitution effect, J. Solid State Chem,2004,177: 2655-2662
    [22]J. Linden, T. Yamamoto, M. Karppinen, et al. Evidence for valence fluctuation of Fe in Sr2FeMoO6-w double perovskite, Appl. Phys. Lett,2000,76:2925-2927
    [23]J. Linden, T. Yamamoto, M. Karppinen, et al. Evidence for valence fluctuation of Fe in Sr2FeMoO6-w double perovskite, Appl. Phys. Lett,2000,76:2925-2927
    [24]J. M. Greneche, M. Venkatesan, R. Suryanarayanan, et al, Mossbauer Spectrometry of A2FeMoO6 (A=Ca,Sr,Ba):search for antiphase domains, Phys. Rev. B 2001,63:1744031-1744035
    [25]Y. Yasukawa, J. Linden, T. S. Chan, et al. Iron valence in double-perovskite (Ba, Sr, Ca)2FeMoO6:isovalent substitution effect, J. Solid State Chem,2004,177: 2655-2662
    [26]D. D. Sarma, E. V. Sampathkumaran, S. Ray, et al. Magnetoresistance in ordered and disordered double perovskite oxide, Sr2FeMoO6, Solid State Commun,2000,114:465-468
    [27]J.-S. Kang, J. H. Kim, A, Sekiyama, et al. Bulk-sensitive photoemission spectroscopy of A2FeMoO6 double perovskite (A=Sr, Ba), Phys. Rev. B,2002, 66,113105
    [28]M. Karppinen, H. Yamauchi, Y. Yasukawa, et al, Valence state of iron in the SrFe2(Mo,W,Ta)O6.0 double perovskite system:an Fe K-edge and L2,3-edge XANES study, Chem. Mater.2003,15:4118.-4121
    [29]S. Ray, A. Kumar, D. D. Sarma, et al. Electronic and magnetic structures of Sr2FeMoO6, Phys. Rev. Lett,2001,87(9):097204
    [30]M. Tovar, M. T. Causa, and A. Butera, Evidence of strong antiferromagnetic coupling between localized and itinerant electrons in ferromagnetic Sr2FeMoO6, Phys. Rev. B 2002,66:0244091-0244095
    [31]T. Nakagawa, Magnetic and electrical properties of ordered perovskite Sr2FeMoO6and its related compounds, J. Phys. Soc. Japan,1986,24:806-811
    [32]A. W. Sleight, J. F. Weiher, Magnetic and electrical properties of Ba2MReO6 ordered perovskites, J. Phys. Chem. Solids,1972,33:679-687
    [33]A. W. Sleight, J. Longo, R. Ward, Compounds of osmium and rhenium with the ordered perovskite structure, Inorg. Chem,1962,1:245-250
    [34]F. K. Patterson, C. W. Moeller, R. Ward, Magnetic oxides of molybdenum(V) and tungsten(V) with the ordered perovskite structure, Inorg. Chem,1963,2: 196-198
    [35]D. Niebieskikwiat, R. D. Sanchez, A. Caneiro, et al, High-temperature properties of the Sr2FeMoO6 double perovskite; Electrical resistivity, magneitc susceptibility, and ESR, Phys. Rev. B,2000,62:3340-3345
    [36]C. L. Yuan, S. G. Wang, W. H. Song, et al. Enhanced intergrain tunneling magnetoresistance in double perovskite Sr2FeMoO6 polycrystals with nanometer-scale particles, Appl. Phys. Lett,1999,75(24):3853-3855
    [37]H. Han, B. J. Han, J. S. Park, et al, Effect of grain size on magnetoreistance in Ba2FeMoO6, J. Appl. Phys,2001,89:7687-7689
    [38]J. B. Philipp, D. Reisinger, M. Schonecke, et al, Spin-dependent transport in the double-perovskite Sr2CrWO6, Appl. Phys. Lett,2001,79:3654-4656
    [39]Kai Wang, Yu Sui. Investigation on the intergranular magnetoresistance of polycrystalline Sr2FeMoO6, Physica B,2004,344:423-429
    [40]D. Niebieskikwiat, A. Caneiro, R.D. Sanchez, et al. Enhancement of the low field magnetoresistance by grain boundary modification in Sr2FeMoO6+δ, Physica B 2002,320:107-110
    [41]D. Niebieskikwiat, A. Caneiro, and R. D. Sanchez, Oxygen-induced grain boundary effects on magnetotransport properties of Sr2FeMoO6+d, Phys.Rev. B, 2001,64:1804061-1804064
    [42]T. T. Fang, Reassessment of the role of antiphase boundaries in the low-field magnetoresistance of Sr2FeMoO6, Phys. Rev. B,2005,71:0644011-0644017
    [43]D. Niebieskikwiat, F. Prado, A. Caneiro, et al. antisite defects versus grain boundary competition in the tunneling magnetoresistance of the Sr2FeMoO6 double perovskite, Phys.Rev. B,2004,70:1324121-1324124
    [44]J. B. Philipp, P. Majewski, D. Reisinger, et al. Magnetoresistance and magentic properties of the double perovskites, Acta Physica Polonica Series A,2004, 1-10
    [45]X. M. Feng, G H Rao, G Y Liu, et al. Structure and magnetoresistance of the double perovskite Sr2FeMoO6 doped at the Fe site, J. Phys:Condens. Matter, 2002,14:12503-12511
    [46]J. Navarro, J. Nogues, J. S. Munoz, et al. Antisites and electron-doping effects on the magnetic transition of Sr2FeMoO6 double perovskite, Phys. Rev. B,2003, 67:1744161-1744166
    [47]D. D. Sarma, E. V. Sampathkumaran, S. Ray, et al. Magnetoresistance in ordered and disordered double perovskite oxide, Sr2FeMoO6, Solid State Commun,2000,114:465-468
    [48]C. Ritter, M. R. Ibarra, L. Morellon, et al, Structural and magnetic properties of double perovskites AA'FeMoO6 (AA'=Ba2, BaSr, Sr2 and Ca2), J. Phys: Condens. Matter 2000,12:8295-8308
    [49]C. Kapusta, D. Zajac, P. C. Riedi, et al, NMR study of A2FeMoO6 (A=Ca, Sr, Ba, M=Mo, Re) double perovskites, J. Magn. Magn. Matter,2004,272-276: e1619-e1621
    [50]O. Chmaissem, B. Drabowski, S. Kolesnik, et al, Nuclear and magnetic structural properties of Ba2FeMoO6,, Phys. Rev. B,2005,71:174421
    [51]M. Retuerto, J. A. Alonso, M. J. Martinez-Lope, et al. Record saturation magnetization, curie temperature, andmagnetoresistance in Sr2FeMoO6 double perovskite synthesized by wet-chemistry eechniques, Appl. Phys. Lett,2004,85: 266-268
    [52]J.-S. Kang, H. Han, B. W. Lee, et al. Electronic structure of the double-perovskite Ba2FeMoO6 using photoemission spectroscopy, Phys. Rev. B, 2001,64:0244291-0244296
    [53]C. Zener. Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Physical Review,1951,82(3):403-405
    [54]P. W. Anderson and H. Hasegawa, Considerations on double exchange, Phys. Rev,1955,100:675-681
    [55]X. M. Feng, G H Rao, G Y Liu, et al. Structure and magnetoresistance of the double perovskite Sr2FeMoO6 doped at the Fe site, J. Phys:Condens. Matter, 2002,14:12503-12511
    [56]K.-I. Kobayashi, T. Okuda, Y. Tomioka, et al. Possible percolation and magnetoresistance in ordered double perovskite Alloys Sr2Fe(W1-xMox)O6, J. Magn. Magn. Matter,2000,218:17-24
    [57]S. L. Yuan, Z. C. Xia, S. Liu, et al. Electrical transport and low-field magnetoresistance in La2/3Ca1/3MnO3/YSZ composites, Chin. Phy. Lett,2002, 19(8):1167-1171
    [58]C. H. Yan, Z. G. Xu, T. Zhu, et al. A large low field colossal magnetoresistance in the La0.7Sr0.3MnO3 and CoFe2O4 combined system, J. Appl. Phys,2000,87: 5588-5590
    [59]S. L. Yuan, G. Q. Zhang, G. Peng, et al. Electrical transport and low-field magnetoresistance in the series of mixed polycrystals (1-m)La2/3Cai/3MnO3+ mLa2/3Sri/3MnO3, J. Phys:Condens. Matter,2001,24:5691-5697
    [60]Y. H. Huang, C. H. Yan, Z. M. Wang, et al. Enhanced magnetoresistance in La0.7Sr0.3MnO3/Nd0.7Sr0.3MnO3 nanocomposites, J. Alloys Comp,2003,349: 224-227
    [61]J.-M. Liu, G. L. Yuan, H. Sang, et al. Low-field magnetoresistance in nanosized La0.7Sr0.3MnO3/Pr0.5Sr0.5MnO3, Appl. Phys. Lett,2001,78(8): 1110-1112
    [62]L. Balcells, A. E. Carrillo, B. Martinez, et al. Enhanced field sensitivity close to percolation in magnetoresistive La2/3Sr1/3MnO3/CeO2 composites, Appl. Phys. Lett.1999,74(26):4014-4016
    [63]Y. H. Huang, J. Linden, H. Yamauchi et al. Large low-field magnetoresistance effect in Sr2FeMoO6 homocomposites, Appl. Phys. Lett.2005,86:0725101-0725103
    [64]X. J. Wang, X. Q. Zhang, Y. Sui, et al, Enhanced low field magnetoresistance in Sr2FeMoO6-glass composites, J. Appl. Phys,2006,99:08J1131-08J1133
    [65]粱敬魁.粉末衍射法测定晶体结构(下册).科学出版社.2003
    [66]L. B. McCusker, R. B. Von Dreele, D. E. Cox, et al. Rietveld refinement guidelines, J. Appl. Cryst,1999,32:36-50
    [67]马礼敦.X射线粉末衍射的新起点-Rietveld全谱拟合.物理学进展.1999.16: 251-270
    [68]H. M. Rietveld. Line profiles of neutron powder-diffraction peaks for structure refinement, Acta. Cryst,1969,22:151-152
    [69]H. M. Rietveld. A profile refinement method for nuclear and magnetic structures, J. Appl. Cryst,1969,2:65-71
    [70]G. Malmros and J.O. Thomas. Least-square structure refinement based on profile analysis of powder film intensity data measured on an automatic microdensitometer, J. Appl. Cryst,1977,10:7-11
    [71]R. A. Young, P. E. Mackie and R. B. Von Dreele. Application of the pattern-fitting structure-refinement method to x-ray powder diffractometer patterns, J. Appl. Cryst,1977,10:262-269
    [721 Http://home.wxs.nl/-rietv025. Rietveld Method
    [73]R. J. Hill, J. C. Madsen. Data collection strategies for constant wavelength rietveld analysis, Powder Diffr,1987,2:146-163
    [74]D. B. Wiles and R. A. Yound. A new computer program for Rietveld analysis of X-ray powder diffraction patterns, J. Appl. Cryst,1981,14:149-151
    [75]A. C. Larson, R. B. Von Dreele, GSAS generalized structure analysis system, Laur 86-748, Los Alamos National Laboratory,1987:132-135
    [76]G. Caglioti, A. Paoletti, F. P. Ricci. Choice of collimator for a crystal spectrometer for neutron diffraction, Nucl. Instrum. Methods,1958,3:223-228
    [77]C. Greaves. Rietveld analysis of powder neutron diffraction data displaying anisotropic crystalline size broadening, J. Appl. Cryst,1985,18:48-50
    [78]D. E. Cox, B. H. Toby, M. M. Eddy. Acquisition of powder diffraction data with synchrotron radiation, Australian Journal of Physics,1988,44:117-131
    [79]G. Will, W. Parrish and T. C. Huang. Crystal-structure refinement by profile fitting and least-square analysis of powder diffractometer data, J. Appl. Cryst, 1983,16:611-622
    [80]W. A. Dollase. Correction of intensities for preferred orientation in powder diffractometry:application of the March model, J. Appl. Cryst,1986,19: 267-272
    [81]梁敬魁.相图与相结构(下).北京,科学出版社.1993.219-811
    [82]M. Sakata, and M. J. Cooper. An analysis of the Rietveld profiles refinement method, J. Appl. Cryst,1979,12:554-556
    [83]冯端,师昌绪,刘治国.材料科学导论-融贯的论述.北京,化学工业出版社,2002
    [84]S. Sakka. Handbook of sol-gel science and technology Processing Characterization and Applications. Kluwe Academic Publishers
    [85]Q. Lin, Greenblatt Martha, E. N. Caspi, et al. Crystallographic and magnetic properties of CaLaMnMoO6 double perovskite. J. Solid State Chemistry,2006, 179:2086-2092
    [86]E. N. Caspi, D. Jorgensen James, V. Lobanov Maxim, et al. Structural disorder and magnetic frustration in ALaMnMoO6(A=Ba,Sr) double perovskites. Phys. Rev. B,2003,67(13):134431
    [87]S. Li, Greenblatt Martha. Large intragrain magnetoresistance in the double perovskite BaLaMnMoO6. J. Alloys Compounds,2002,338:121-125
    [88]田世哲,赵军钗,乔从德,等.溶胶-凝胶法制备双钙钛矿型氧化物SrLaMnBO6(B:Mo,W)及其磁学性能.应用化学,2006,23(9):945-948
    [89]X. J. Liu, Q. J. Huang. S. Y. Zhang. et al. Thermal diffusivity of double perovskite Sr2MMoO6 (M=Fe, Mn and Co) and La doping effects studied by mirage effect. J. physics and Chemistry of Solids,2004,65:1247-1251
    [90]Rodriguez-Carvajal. Physica B,1993,192:55
    [91]A. K. Azad, S. G. Eriksson, S. A. Ivanov, et al. Synthesis, structural and magnetic characterisation of the double perovskite A2MnMoO6(A=Ba,Sr)[J]. J. Alloys Compounds,2004,364:77-82
    [92]A. Munoz, J. A. Alonso, M. T. Casais, et al. Crystal and magnetic structure of the complex oxides Sr2MnMoO6, Sr2MnWO6 and Ca2MnWO6:a neutron diffraction study. J. Phys.:Condens. Matter,2002,14:8817-8830
    [93]R. D. Shannon. Acta Crystallogr A,1976,32:75
    [94]J. Inoue Smaekawa. Thoery of tunneling magnetoresistance in granular magnetic film. Phys Rev B.1996,53:R11927-R11929
    [95]J. L. Simon, and M. G. Kanatzidis. Beyond crystallography:the study of diorder, nanocrystallinity and crystallographically challenged materials with pair distribution functions, Chem. Commun.2004,749-760

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700