用户名: 密码: 验证码:
药物分子安替比林和异丙安替比林的质谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用激光解析/同步辐射真紫外单光子电离和反射式飞行时间质谱相结合的技术,主要研究了镇痛、抗炎类药物安替比林和异丙安替比林的光电离/解离实验和理论研究,并介绍了一种新型射频电源-真紫外放电灯的设计。
     在第一章中,首先介绍了质谱研究的现状、原理、发展概要及结构组成。然后介绍了离子源的种类,并详细介绍了几种与本文相关的离子源如电子轰击电离、电喷雾电离、光电离、激光解析/电离和红外激光解析/真紫外光电离;简单介绍了质量分析器的种类及飞行时间质谱仪的发展、原理和性能参数等。再简单阐述了质谱仪的主要参数如质量范围、分辨率、灵敏度、精密度和准确度等。
     在第二章中,主要介绍了激光解析实验中所用的实验装置。首先概述了同步辐射光源的特点,国家同步辐射实验室(NSRL)储存环的性能及相关参数。简要介绍了U10和U14C光束线的装置和性能,光束线U14C选用波荡器发生的同步辐射,可以提供能量范围7.5-124 eV的真紫外光。然后介绍了激光解析实验装置的组成、性能参数及反射式飞行时间质谱仪。接着简单介绍了电喷雾电离装置和三重四极杆-反射式飞行时间质谱仪装置。最后介绍了理论计算的方法。
     在第三章中,用红外激光解析/真紫外光电离的方法,从实验和理论的角度,详细研究了药物分子安替比林和异丙安替比林的光电离/解离机理。由实验得到了安替比林和异丙安替比林在不同真紫外光子能量下的质谱图,得到其各种碎片离子信息,通过测量光电离效率谱得到其电离能分别为7.62 eV和7.54 eV。实验结果和理论计算得出脱甲基、羰基和吡唑环开环解离反应是这两个化合物的主要解离路径。由于异丙基的影响,异丙安替比林脱甲基的最优路径与安替比林不同。另外,两者具有相似的吡唑环重排脱羰基和吡唑环开环碎裂反应。异丙安替比林离子也可以直接脱去异丙基生成安替比林离子。对这两种药物分子的解离机理研究有助于理解其化学特性。
     在第四章中,介绍了一种用射频电源激发惰性气体放电的真紫外放电灯装置。其产生的真紫外光具有很强的光强特性。然后介绍了放电灯的设计结构及感应线圈的匹配参数,同时也介绍了一种测量光强的新装置,并通过实验测量了氪与混合气体产生的真紫外光的光强,测量了水杨酸和1,4-NQ的质谱图。最后还介绍了氩气产生的真紫外光的能量及光强。
The dissertation mainly introduces the experimental investigations of antipyrine and propyphenazone with the infrared laser desorption/tunable synchrotron vacuum ultraviolet photoionization mass spectrometry and theoretical calculations, and provides the design of radio frequency power– vacuum ultraviolet lamp.
     In the first chapter, it firstly introduces the status, principles, development outlines and components of mass spectrometry. Some ion sources involved in this dissertation such as electron ionization, electrospray ionization, photoionization, laser desorption/ionization and infrared laser desorption/vacuum ultraviolet photoionization are briefly described. The details of time-of-flight mass spectrometer is introduced and the mass range, resolution, sensitivity and mass accuracy of mass spectrometry are introduced.
     In the second chapter, it mainly introduces all the instuments of infrared laser desorption experiment. A summary is given on the characteristics and applications of synchrotron radiation, the parameters of storage ring of National Synchrotron Radiation Laboratory (NSRL). It introduces the structures of the combustion and flame (U10) and mass spectrometry analysis (U14C) beamlines, the undulator beamline can provide the tunable VUV light in the energy range of 7.5-124 eV. An introduction is also given about the components, parameters of infrared laser desorption instrument and the reflectron time-of-flight mass spectrometer, subsequentely, electrospray ionziation instrument and triple-quadrupole-time-of-flight mass spectrometry are depicted followed by introducing of theoretical calculations.
     In the third chapter, antipyrine and propyphenazone, are studied using IR laser desorption combined with tunable synchrotron VUV photoionization mass spectrometry and theoretical calculations. Mass spectra of different photon energies and fragment ions are observed. The IEs of these two drugs have been measured to be 7.62 and 7.54 eV by scaning photoioniation effiency spectra, respectively. Methyl, CO eliminations and pyrazole ring-opening dissociation are the predominant fragmentation pathways of these two analytes, which are discussed by experimental results combining with theoretical calculations. They have different predominant methyl elimination pathways due to the isopropyl substitution of propyphenazone. Furthermore, they also have the analogous fragmentation channels to form CO elimination products by pyrazole ring rearrangement and pyrazole ring-opening dissociation. Propyphenazone cation can directly eliminate isopropyl radical to form antipyrine cation. The investigations on fragmentations of two drugs are helpful to understand the chemical properties of them.
     In the fourth chapter, RF-powered vacuum ultraviolet lamp is introduced in detail which has high photon flux. The RF-VUV lamp structure, the inductive coil parameters and a new set of photon flux measurement are described. Measurement of photon flux of RF-VUV lamp with mixture gas (krypton and helium) are provided, and mass spectra of salicylic acid and 1,4-NQ are given. Finally, it introduces the photon flux and energy of RF-VUV lamp with angon.
引文
[1] W. F. Smyth. Electrophoresis. 2005, 26, 1334.
    [2] C. J. W. Franklin Smyth, Venkataraman N. Ramachandran, Edmund O’Kane, Danny Coulter. analytica Chimica Acta. 2004, 506, 203.
    [3] R. D. Sara Ullsten, Daniel B¨ackstr¨om, Per Sj¨oberg, Jonas Bergquist. Journal of Chromatography A. 2006, 1117, 87.
    [4] M. M. JB Fenn, CK Meng, SF Wong, and CM Whitehouse Science. 1989, 246, 64.
    [5] A. P. Jonsson. CMLS, Cell. Mol. Life Sci. 2001, 58, 868.
    [6] A. v. Brocke, G. Nicholson, E. Bayer. Electrophoresis. 2001, 22, 1251.
    [7] J. R. K. Nadja B. Cech, and Christie G. Enke. anal. chem. 2001, 73, 208.
    [8] X.-P. L. Takeshi Kumazawa , Keizo Sato, Osamu Suzuki. Analytica Chimica Acta. 2003, 492, 49.
    [9] L. Rivier. Analytica Chimica Acta. 2003, 492, 69.
    [10] V. K. Michael Deters, Gabriele I. Kirchner. analytica Chimica Acta. 2003, 492, 133.
    [11] P. J. T. Bronwyn Atcheson, Peter I. Pillans, Susan E. Tett. analytica Chimica Acta. 2003, 492, 157.
    [12] H. T. K. Kudo, N. Ikeda. analytica Chimica Acta. 2003, 492, 83.
    [13] C. A. D.G. Watson, E.J. Oliveira. analytica Chimica Acta. 2003, 492, 17.
    [14] M. S. B. M. a. F. H. Field. journal of the american chemistry society. 1966, 88, 2621.
    [15] J. A. Loo. Int J Mass Spectrom. 2000, 200, 175.
    [16] D. L. Hildenbrand. Int J Mass Spectrom. 2000, 197, 237.
    [17] M. K. Franz Hillenkamp*. Int J Mass Spectrom. 2000, 200, 71.
    [18] M. S. Atsumu. Hirabayashi, and Hideaki. Koizumi. Anal. Chem. 1994, 66, 4557.
    [19] J. Matejicek, P. Chraska, J. Linke. Journal of Thermal Spray Technology. 2007, 16.
    [20] X. Y. Wei Hang, David M. Wayne, Jose A. Olivares, W. W. Harrison, Vahid Majidi. Anal. Chem. 1999, 71, 3231.
    [21] A. V. Marcela Nefliu, R. Graham Cooks. Chem. Commun. 2005, 888.
    [22] C. S. Miller, T. J. Prihoda. Abstracts of Papers of the American Chemical Society. 1998, 216.
    [23] M. R. Balogh. Lc Gc North America. 2006, 24.
    [24] C. Z. Na Na, Mengxia Zhao, Sichun Zhang, Chengdui Yang, Xiang Fang, Xinrong Zhang. Journal of Mass Spectrometry. 2007, 42, 1079.
    [25] M. Karas, D. Bachmann, U. Bahr, F. Hillenkamp. International Journal of Mass Spectrometryand Ion Processes. 1987, 78, 53.
    [26] A. P. J. William J. GRIFFITHS1, Suya LIU, Dilip K. RAI and Yuqin WANG. Biochem. J. 2001, 355, 545.
    [27] H. P. Nguyen, K. A. Schug. Journal of Separation Science. 2008, 31.
    [28] D. A. Plattner. Int J Mass Spectrom. 2001, 207, 125.
    [29] T. D. Veenstra. Biophysical Chemistry. 1999, 79, 63.
    [30] M. M. J. B. Fenn, C. K. Meng, S. F. Wong, and C. M. Whitehouse. Science. 1989, 246, 64.
    [31] A. M. H. D. C. M. Jason S. Sampson. Rapid Communications in Mass Spectrometry. 2007, 21, 1150.
    [32] R. Bakhtiar, R. W. Nelson. Biochemical Pharmacology. 2000, 59, 891.
    [33] H. W. Koichi Tanaka, Yutaka Ido, Satoshi Akita, Yoshikazu Yoshida, Tamio Yoshida, T. Matsuo. Rapid Communications in Mass Spectrometry. 1988, 2, 151.
    [34] E. v. D. Robert H. H. van den Heuvel, Hortense Mazon, Silvia A. Synowsky,, C. V. Kristina Lorenzen, Stan J. J. Brouns, Dave Langridge, John van der Oost,, A. J. R. H. John Hoyes. Anal. Chem. 2006, 78, 7473.
    [35] A. V. L. A. N. Krutchinsky, V. L. Spicer, R. Dworschak, W. Ens, K. G. Standing. Rapid Communications in Mass Spectrometry. 1998, 12, 508.
    [36] D. S. M. Guilhaus, and V. Mlynski. Mass Spectrometry Reviews,. 1999, 19, 65.
    [37] I. J. Amster. Journal of Mass Spectrometry. 1996, 31, 1325.
    [38] R. G. C. Richard H. Perry, Robert J. Noll. Mass Spectrometry Reviews. 2008, 27, 661.
    [39] D. C. John R. Yates, Lujian Liao, Vlad Zabrouskov. Anal. Chem. 2006, 78, 493.
    [40] R. J. N. Qizhi Hu, Hongyan Li, Alexander Makarov, Mark Hardmanc, R. Graham Cooks. Journal of Mass Spectrometry. 2005, 40, 430.
    [41] J. J. Thomson. Longmans, Green & Co.: London 1913, 1921.
    [42] F. W. Aston. Longmans: London 1933, 1941.
    [43] A. J. Dempster. Phys. Rev. 1921, 18, 415.
    [44] W. Bleakney. Phys. Rev. 1929, 34, 157.
    [45] A. O. Nier. Rev. Sci. Instrum. 1940, 11, 212.
    [46] A. O. Nier. Rev. Sci. Instrum. 1947, 18, 398.
    [47] K. B. H. Deutsch, S. Matt, and T. D. Mark. Int J Mass Spectrom. 2000, 197, 37.
    [48] L. L. M. M. Dole, R. L. Hines, R. C. Mobley, L. D. Ferguson, M. B. Alice. J. Chem. Phys. 1968, 49, 2240.
    [49] A. P. Bruins. Journal of Chromatography A. 1998, 794, 345.
    [50] N. B. Cech, C. G. Enke. Mass Spectrometry Reviews. 2001, 20, 362.
    [51] M. Yamashita, J. B. Fenn. J. Phys. Chem. 1984, 88, 4451.
    [52] L. N. G. M. L. Aleksandrov, V. N. Krasnov, V. I. Nikolaev, V. A. Pavlenko, V. A. Shkurov. Dokl. Akad. Nauk SSSR. 1984, 277, 379.
    [53] G. J. V. B. J. F. Mora, C. G. Enke, R. B. Cole, M. Martinez-Sanchez, and J. B. Fenn. J. Mass Spectrom. 2000, 35, 939.
    [54] J. V. I. a. B. A. Thomson. J. Chem. Phys. 1976, 64, 2287.
    [55] W. Henderson, B. K, Nicholson, L. J. McCaffrey. Polyhedron. 1998, 17, 4291.
    [56] H. Hertz. Ann. Physik Chemie. 1887, 267, 983.
    [57] A. Einstein. Ann. Physik. 1905, 322, 132.
    [58] R. W. Ditchburn, F. L. Arnot. Proc. Roy. Soc. London. 1929, A123, 516.
    [59] M. G. I. H. Hurzeler, and J. D. Morrison. J. Chem. Phys. 1958, 28, 76.
    [60] J. N. Driscoll, J. B. Clarici. Chromatographia. 1976, 9, 567.
    [61] B. S. D. D. C. Locke, and A. D. Baker. anal. chem. 1982, 54, 447.
    [62] R. L. E. M. A. Baim, and H. H. Hill, Jr. anal. chem. 1983, 55, 1761.
    [63] K. N. T. A. Cool, C. A. Taatjes, A. McIlroy, P. R. Westmoreland, M. E. Law, and A. Morel. Proc. Combust. Inst. 2005, 30, 1681.
    [64] N. H. Craig A. Taatjes, Andrew McIlroy, James A. Miller, Juan P. Senosiain, Stephen J. Klippenstein, Fei Qi, Liusi Sheng, Yunwu Zhang, Terrill A. Cool, Juan Wang, Phillip R. Westmoreland, Matthew E. Law, Tina Kasper, Katharina Kohse-Ho¨inghaus. Science. 2005, 308, 1887.
    [65] R. E. H. a. J. R. Woolston. Appl. Phys. Lett. 1963, 2, 138.
    [66] E. U. l. F. Hillenkamp, R. Kaufmann, and R. Nitsche. Appl. Phys. 1975, 8, 341.
    [67] P. G. K. M. A. Posthumus, H. L. C. Meuzelaar, and M. C. Ten Noever de Brauw. anal. chem. 1978, 50, 985.
    [68] R. J. C. a. J. M. Capellen. Int. J. Mass Spectrom. Ion Phys. 34, 34, 197.
    [69] T. K. D. a. S. Harayama. Anal. chem. 2001, 73, 864.
    [70] W. Guo, Y. Bi, H. Guo, Y. Pan, F. Qi, W. Deng, H. Shan. Rapid Commun. Mass Spectrom. 2008, 22,
    [71] P. R. Buseck. Earth Planetary Sci. Lett. 2002, 203, 781.
    [72] D. P. M. Kalberer, M. Sax, M. Steinbacher, J. Dommen, A. S. H. Prevot, R. Fisseha, E. Weingartner, V. Frankevich, R. Zenobi, and U. Baltensperger. Science. 2004, 303, 1659.
    [73] M. R. S. H. Gnaser, W. F. Calaway, C. E. Tripa, I. V. Veryovkin, and M. J. Pellin. Int J Mass Spectrom. 2005, 245, 61.
    [74] U. B. M. Karas, and F. Hillenkamp. Int. J. Mass Spectrom. Ion Proc. 1989, 92, 231.
    [75] M. Karas, F. Hillenkamp. Anal. Chem. 1988, 60, 2299.
    [76] H. W. K. Tanaka, Y. Ido, S. Akita, Y. Yoshida, and T. Yoshida. Rapid Commun. Mass Spectrom. 1988, 2, 151.
    [77] D. B. M. Karas, U. Bahr, and F. Hillenkamp. Int. J. Mass Spectrom. Ion Proc. 1987, 78, 53.
    [78] Y. Pan, T. Zhang, X. Hong, Y. Zhang, L. Sheng, F. Qi. Rapid Commun. Mass Spectrom. 2008, 22, 1619.
    [79] Y. Pan, L. D. Zhang, T. C. Zhang, H. J. Guo, X. Hong, F. Qi. J. Mass Spectrom. 2008, 43, 1701.
    [80] Y. Pan, L. D. Zhang, H. J. Guo, H. Yin, F. Qi. Chinese Journal of Chemical Physics. 2008, 22, 129.
    [81] Y. Pan, L. Zhang, H. Guo, F. Qi. J. Phys. Chem. A. 2008, 112, 10977.
    [82] Y. Pan, H. Yin, T. Zhang, H. Guo, L. Sheng, F. Qi. Rapid Commun. Mass Spectrom. 2008, 22, 2515.
    [83] W. E. Stephens. Phys. Rev. 1946, 69, 691.
    [84] J. H. J. D. a. M. Guilhaus. Rapid Communications in Mass Spectrometry. 1989, 3, 155.
    [85] I. V. C. A. F. Dodonov, and V. V. Laiko. 12th International Mass Spectrometry Conference. 1991, 26–30 August, 1991, Amsterdam, the Netherlands, 153.
    [86] E. D. L. C. H. Sin, and M. L. Lee. anal. chem. 1991, 63, 2897.
    [87] J. G. B. a. C. M. Whitehouse. anal. chem. 1992, 64, 2084.
    [88] W. E. A. N. Verentchikov, and K. G. Standing. anal. chem. 1994, 66, 126.
    [89] V. I. K. B. A. Mamyrin, D. V. Shmikk, and V. A. Zagulin. Sov. Phys. JETP. 1973, 37, 45.
    [90] B. A. Mamyrin. Int J Mass Spectrom. 2001, 206, 251.
    [91] W. G. R. J. Cotter, and C. Jelinek. J. Chromatogr. 2007, B855, 2.
    [92] D. H. J. Flensburg, J. Blomberg, J. Bielawski, and D. Ivansson. J. Biochem. Biophys. Meth. 2004, 60, 319.
    [93] B. T. A. E. Giannakopulos, A. W. Colburn, D. J. Reynolds, E. N. Raptakis, A. A. Makarov, and P. J. Derrick. Rev. Sci. Instrum. 2002, 73, 2115.
    [94] T. C. a. R. J. Cotter. Rapid Communications in Mass Spectrometry. 1992, 7, 242.
    [95] T. J. C. a. R. J. Cotter. Rapid Communications in Mass Spectrometry. 1993, 7, 1037.
    [96] P. H. k. C. K. G. Piyadasa, and T. R. Ariyaratne. Rapid Communications in Mass Spectrometry. 1999, 13, 620.
    [97] W. C. Wiley, I. H. McLaren. Rev. Sci. Instrum. 1955, 26, 1150.
    [98] R. S. B. a. J. J. Lennon. anal. chem. 1995, 67, 1998.
    [99] P. J. M. L. Vestal, and S. A. Martin. Rapid Communications in Mass Spectrometry. 1995, 9,1044.
    [100]L. M. R. R. M. Whittal, S. R. Weinberger, and L. Li. anal. chem. 1997, 69, 2147.
    [1] X. Y. He, Jin, Y. N. Annual Report, NSRL, USTC, Hefei, China. 1992-1993.
    [2]张泰昌,朱爱国,洪新,潘洋,单晓斌,盛六四,张允武,齐飞.中国科学技术大学学报. 2007, 37.
    [3] Y. Pan, T. Zhang, X. Hong, Y. Zhang, L. Sheng, F. Qi. Rapid Communications in Mass Spectrometry. 2008, 22.
    [4] Y. Pan, L. D. Zhang, T. C. Zhang, H. J. Guo, X. Hong, F. Qi. Journal of Mass Spectrometry. 2008, 43.
    [5] Y. Pan, L. D. Zhang, H. J. Guo, H. Yin, F. Qi. Chinese Journal of Chemical Physics, 2008, 22, 129.
    [6] Y. Pan, L. Zhang, H. Guo, F. Qi. J. Phys. Chem. A. 2008, 112.
    [7] Y. Pan, H. Yin, T. Zhang, H. Guo, L. Sheng, F. Qi. Rapid Communications in Mass Spectrometry. 2008, 22.
    [8] B. Y. Chaoqun Huang, Rui Yang, Jing Wang, Lixia Wei, Xiaobin Shan, Liusi Sheng,, a. F. Q. Yunwu Zhang. Review of Scientific Instruments. 2005, 76, 126108.
    [9] E. W. Schlag, Time-of-Flight Mass Spectrometry and Its Applications. 1994.
    [10] B. A. Mamyrin, V. I. Karatacv, D. V. Shmikk, V. A. Zagulin. Sov. Phys. - JETP. 1973, 37,
    [11] T. Bergmann, T. P. Martin, H. Schaber. Rev. Sci. Instrum. 1989, 60.
    [12] U. Boesl, R. Weinkauf, E. W. Schlag. Int. J. Mass Spectrom. Ion. Processes. 1992, 112.
    [13] L. E. Berg, P. Erman, E. Kallne, S. Sorensen, Sundstrom. Physica Scripta. 1991, 44.
    [14] A. E. Cameron, e. al. Rev. Sci. Instrum. 1948, 19.
    [15] W. C. Willy, I. H. McLaren. Rev. Sci. Instrum. 1955, 26.
    [16] T. Bear, L. Squires, A. Werner. Chem. Phys. 1974, 6.
    [17] I. V. Chemushevich, B. A. Thomson. anal. chem. 2004, 76, 1754.
    [18] I. V. Chernushevich, A. V. Loboda, B. A. Thomson. Journal of mass spectrometry. 2001, 36, 849.
    [19] R. H. M. v. d. Heuvel, E. v. Duijn, H. Mazon, S. A. Synowsky, K. Lorenzen, C. Versluis, S. J. J. Brouns, D. Langridge, J. v. d. Oost, J. Hoyes, A. J. R. Heck. anal. chem. 2006, 78, 7473.
    [20] F. Sobott, H. Hernande, M. G. McCammon, M. A. Tito, C. V. Robinson. anal. chem. 2002, 74, 1402.
    [21] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. M. Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D.Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Pikorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nakayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzales, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian 03. 2004, Pittsburgh, PA: Gaussian, Inc.
    [1] J. J. Li, Knorr. Pyrazole Synthesis, Springer, Berlin Heidelberg New York. 2006, 331.
    [2] S. M. Sondhi, N. Singhal, R. P. Verma, S. K. Arora, S. G. Dastidar. Indian J. Chem. Sect B-Org. Chem. Incl. Med. Chem. 2001, 40, 113.
    [3] E. Radzikowska, K. Onish, E. Chojak. Eur. J. Cancer. 1995, 31A, 1077.
    [4] S. Bondock, R. Rabie, H. A. Etman, A. A.Fadda. European Journal of Medicinal Chemistry 2008, 43, 2122.
    [5] N. Raman, A. Kulandaisamy, K. Jeyasubramanian. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2005, 34, 17.
    [6] S. Cunha, S. M. Oliveira, M. T. Rodrigues, R. M. Bastos, J. Ferrari, C. M. A. de Oliveira, L. Kato, H. B. Napolitano, I. Vencato, C. Lariucci. J. Mol. Struct. 2005, 752, 32.
    [7] N. Raman, A. Kulandaisamy, K. Jeyasubramanian. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2002, 32, 1583.
    [8] A. P. Mishra. J. Indian Chem. Soc. 1999, 76, 35.
    [9] M. Mahmoud, R. Abdel-Kader, M. Hassanein, S. Saleh, S. Botros. European Journal of Pharmacology. 2007, 569, 222.
    [10] S. M. Sondhi, V. K. Sharma, R. P. Verma, N. Singhal, R. Shukla, R. Raghubir, M. P. Dubey. Synthesis-Stuttgart. 1999, 878.
    [11] M. M. F. Ismail, Y. A. Ammar, H. S. A. El-Zahaby, S. I. Eisa, S. E. S. Barakat. Arch. Pharm. Chem. Life Sci. 2007, 340, 476.
    [12] T. Bansal, M. Singh, G. Mishra, S. Talegaonkar, R. K. Khar, M. Jaggi, R. Mukherjee. J. Chromatogr. B. 2007, 859, 261.
    [13] E. S. H. Ei Ashry, L. F. Awad, E. I. Ibrahim, O. K. Bdeewy. Chinese Journal of Chemistry. 2007, 25, 570.
    [14] G. l. Turan-Zitouni, M. S?vac?, F. S. K?l?c, K. Erol. Eur. J. Med. Chem. 2001, 36, 685.
    [15] A. Gürsoy, S. Demirayak, G. ?apan, K. Erol, K. Vural. Eur. J. Med. Chem. 2000, 35, 359.
    [16] M. Gaber, A.M.Hassanein, A.A.Lotfalla. J. Mol. Struct. 2008, 875, 322.
    [17] M. S. Collado, V. E. Mantovani, H. C. Goicoechea, A. C. Olivieri. Talanta. 2000, 52, 909.
    [18] S. A. J. Coolen, T. Ligor, M. van Lieshout, F. A. Huf. J Chromatogr B. 1999, 732, 103.
    [19] Y. X. Sun, W. X. Wei, Q. L. Hao, L. D. Lu, X. Wang. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy. 2009, 73, 772.
    [20] Y. X. Sun, Q. L. Hao, Z. X. Yu, W. X. Wei, L. D. Lu, X. Wang. Molecular Physics. 2009,107, 223.
    [21] Y. X. Sun, Q. L. Hao, W. X. Wei, Z. X. Yu, L. D. Lu, X. Wang, Y. S. Wang. Journal of Molecular Structure-Theochem. 2009, 904, 74.
    [22] Y. X. Sun, Q. L. Hao, W. X. Wei, Z. X. Yu, L. D. Lu, X. Wang, Y. S. Wang. Journal of Molecular Structure. 2009, 929, 10.
    [23] Y. Pan, T. Zhang, X. Hong, Y. Zhang, L. Sheng, F. Qi. Rapid Communications in Mass Spectrometry. 2008, 22, 1619.
    [24] Y. Pan, L. D. Zhang, T. C. Zhang, H. J. Guo, X. Hong, F. Qi. Journal of Mass Spectrometry. 2008, 43, 1701.
    [25] Y. Pan, L. D. Zhang, H. J. Guo, H. Yin, F. Qi. Chinese Journal of Chemical Physics. 2008, 22, 129.
    [26] Y. Pan, L. Zhang, H. Guo, F. Qi. J. Phys. Chem. A. 2008, 112, 10977.
    [27] Y. Pan, H. Yin, T. Zhang, H. Guo, L. Sheng, F. Qi. Rapid Communications in Mass Spectrometry. 2008, 22, 2515.
    [28] W. Guo, Y. Bi, H. Guo, Y. Pan, F. Qi, W. Deng, H. Shan. Rapid communications in mass spectrometry. 2008, 22, 4025.
    [29] G. W. T. M.J. Frisch, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant,J.M. Millam, S.S.Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P.Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann,O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K.Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich,A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari,J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov,G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith,M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson,W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople. Gaus
    sian 03, Revision C. 02,Gaussian, Inc., Wallingford, CT. 2004.
    [30] A. D. Becke. J. Chem. Phys. 1993, 98, 5648.
    [31] F. M. Hironori Tsunoyama, and Koichi Ohno. J. Phys. Chem. A. 2004, 108, 5944.
    [1] M. J. Northway, J. T. Jayne, D. W. Toohey, M. R. Canagaratna, A. Trimborn, K. I. Akiyama, A. Shimono, J. L. Jimenez, P. F. DeCarlo, K. R. Wilson, D. R. Worsnop. Aerosol Science and Technology. 2007, 41, 828.
    [2] M. R. Canagaratna, J. T. Jayne, J. L. Jimenez, J. D. Allan, M. R. Alfarra, Q. Zhang, T. B. Onasch, F. Drewnick, H. Coe, A. Middlebrook, A. Delia, L. R. Williams, A. M. Trimborn, M. J. Northway, P. F. DeCarlo, C. E. Kolb, P. Davidovits, D. R. Worsnop. Mass Spectrometry Reviews. 2007, 26, 185.
    [3] E. Gloaguen, E. R. Mysak, S. R. Leone, M. Ahmed, K. R. Wilson. International Journal of Mass Spectrometry. 2006, 258, 74.
    [4] E. R. Mysak, K. R. Wilson, M. Jimenez-Cruz, M. Ahmed, T. Baer. Analytical Chemistry. 2005, 77, 5953.
    [5] B. Oktem, M. P. Tolocka, M. V. Johnston. Analytical Chemistry. 2004, 76, 253.
    [6] E. Woods, G. D. Smith, R. E. Miller, T. Baer. Analytical Chemistry. 2002, 74, 1642.
    [7] D. C. Sykes, E. Woods, G. D. Smith, T. Baer, R. E. Miller. Analytical Chemistry. 2002, 74, 2048.
    [8] E. Woods, G. D. Smith, Y. Dessiaterik, T. Baer, R. E. Miller. Analytical Chemistry. 2001, 73, 2317.
    [9] J. N. Shu, S. K. Gao, Y. Li. Aerosol Science and Technology. 2008, 42, 110.
    [10] J. Wieser, D. E. Murnick, A. Ulrich, H. A. Huggins, A. Liddle, W. L. Brown. Review of Scientific Instruments. 1997, 68, 1360.
    [11] L. Resonance. http://resonance.on.ca/RF_Powered_Lamps.html.
    [12] J. W. F. Muhlberger, A. Morozov, A. Ulrich, and R. Zimmermann. Anal. Chem. 2005, 77, 2218.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700