用户名: 密码: 验证码:
Si纳米线的固—液—固可控生长及其形成机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以Au或Al膜作为金属催化剂,基于固-液-固(SLS)生长机制,直接从n-(111)单晶Si衬底上生长了具有一定直径、长度和密度分布的Si纳米线(SiNWs)。实验研究了催化剂膜层厚度、生长温度、气体流量和生长时间等工艺条件对Si纳米线生长的影响。利用扫描电子显微镜(SEM)、X射线能量损失谱(EDS)和X-射线衍射仪(XRD)对Si纳米线的形貌、组分和生长晶向进行了分析表征。结果表明,制备高密度、大面积和分布有序Si纳米线的典型工艺条件为:Au或Al膜厚度为5-10nm,生长温度为1100℃,N2或Ar气流量为1.5 L/min和生长时间为60min。其Si纳米线的直径约为50-300nm,长度为数微米到数十微米,甚至有的可达几个毫米。采用Xe灯在室温条件下测量了Si纳米线的光致发光(PL)特性,发现在400-480nm波长范围有一个强蓝光发射带,其峰值波长约为420nm。从微观组织热力学、晶体生长动力学角度定性分析了Au-Si共晶液滴的形成、Si纳米线的生长机理。分析指出,Si纳米线生长的过程主要为:金属催化剂的沉积,Au-Si共晶液滴的形成,Si在合金中的偏聚,成核并分离析出以及Si纳米线的生长。
High quality silicon nanowires (SiNWs) were grown directly from n-(111) single crystal silicon based on solid-liquid-solid(SLS) mechanism use Au or Al films as metallic catalyst. The effects of metal film thickness, annealing temperature, growth time and gas flow rate on the formation of the SiNWs were experimentally investigated. The morphology and microstructure, chemical compositions and growth crystall orientation of the SiNWs were characterized and analyzed by the scanning electron microscopy(SEM), the energy-dispersive X-ray spectroscopy(EDS) and X-ray powder diffraction(XRD). The results indicated that the optimize parameters to realize Si nanowires with high density, uniform distribution and similar direction are as follows: the thickness of Au or Al film is between 5-10 nm, the temperature is 1100℃, and the flow of N2 or Ar is 1.5L/min. The diameters and lengths of the formed SiNWs are 20-300nm and from several micrometers to sereral tens of micrometerss and some even reaching millimeter level, respectively. The room temperature photoluminescence (PL) properties of the SiNWs were observed by Xe lamp. The results shown that the SiNWs have a stronly blue luminescencent band around 400-480nm with an emission peak position at 420nm. The formed process of the SiNWs is analysized qualitatively based on microstructure thermodynamics and crystal growth kinetics.The results shown that the process of the SiNWs include that the deposit of metal catalyst, the form of Au-Si eutectic droplet alloy, there is gather in partial district of Si in Au-Si, the alloy run out the undercooled region, nucleus formation and Si were separate out form Au-Si alloy and serve as seed crystal, and the SiNWs were grown.
引文
[1] Iijima S.Helical microtubes of graphitic carbon[J].Nature,1991,354:56-58
    [2] Suenaga K, Colliex C and Demoncy N, et al.Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon[J].Science, 1997, 278, 653-658
    [3] Service R F. Breakthrough of the year: molecules get wired [J].Science,2001,294:2442-2443
    [4]袁爱华,汪萍,沈小平.一维纳米结构材料制备方法的研究进展[J].化学研究与应用,2006,18:122
    [5]郭敏,刁鹏,蔡生民.有序纳米线棒管阵列材料的研究进展[J].化学通报,2006,12:883-891
    [6]张晓丹,曹阳,贺军辉.一维Si纳米材料的可控制备和机理[J].化学进展,2008,20:1064-1072
    [7] Peercy P S. The drive to miniaturization [J ]. N ature, 2000,406: 1023-1026
    [8] Lew K K,Redwing J M.Growth characteristics of silicon nanowires synthesized by vapor-liquid-solid growth in nanoporous alumina templates[J]. J. Crystal. Growth.,2003,254: 14-22
    [9] Li C P,Sun X H,Wong N B,et al.Ultrafine and uniform silicon nanowires grown with zeolites[J]. Chem.Phys.Lett.,2002,365: 22-26
    [10] Christiansen S,Schneider R,Scholz ,et al.Vapor- liquid-solid growth of silicon nanowires by chemical vapor deposition on implanted templates[J]. J. Appl .Phys.,2006,100: 084323
    [11] Albuschies J, Baus M, Winkler O,et al. High-density silicon nanowire growth from self-assembled Au nanoparticles[J]. Microelectronic Engineering, 2006, 83: 1530–1533
    [12] Kwak D W, Cho H Y, Yang W C. Dimensional evolution of silicon nanowires synthesized by Au–Si island-catalyzed chemical vapor deposition[J]. Physica E, 2007,37:153–157
    [13] Zeng X B,Xu Y Y,Zhang S B,et al. Silicon nanowires grown on a pre-annealed Si substrate[J]. J. Cryst. Growth., 2003, 247:13–16
    [14] Morales A M, Lieber C M,et al. A laser ablation method for synthesis of crystalline semiconductor nanowires[J].Science,1998,279:208–211
    [15] Fukata N, Oshima T, Okada N, et al. Phonon confinement in silicon nanowires synthesized by laser ablation[J]. Physica B,2006,(376–377):864–867
    [16] Niu J J, Sha J, Yang D. Silicon nanowires fabricated by thermal evaporation of silicon monoxide[J]. Physica E,2004,23:131–134
    [17] Feng S Q, Yu D P, Zhang H Z, et al. The growth mechanism of silicon nanowires and their quantum confinement effect[J]. J. Crystal.Growth.,2000, 209:513–517
    [18] Holmes J D,Johnston K P,Doty R C,et al. Control of thickness and orientation of solution-grown silicon nanowires[J]. Science , 2000 , 287 : 1471–1474
    [19] Tuan H Y, Lee D C, Korgel B A. Angew. Communication nanocrystal-mediated crystallization of silicon and germanium nanowires in organic solvents: the role of catalysis and solid-phase seeding[J].Chem. Int . Ed.,2006, 45 : 5184 -5187
    [20] Pei L Z,Tang Y H,Chen Y W,et al. Silicon nanowires grown from silicon monoxide underhydrothermal conditions[J]. J. Cryst.Growth.,2006 , 289 : 423-427
    [21]裴立宅,唐元洪,张勇,郭池,陈扬文.Si纳米线的电学性质[J].电子器件,2005,28:949-953
    [22] Sacconi F,Persson M P,Povolotskyi M,et al.Electronic and transport properties of silicon nanowires[J]. J.Comput Electron,2007,6:329–333
    [23] Chung S W,Yu J Y,Heath J R.Silicon nanowire devices [J ].Appl.Phys.Lett., 2000, 76 : 2068-2069
    [24] Cui Y, Zhong Z H, Wang D L , et al. H igh performance silicon nanowire field effect transistors[J]. Nano lett.,2003, 3 : 149-152
    [25] Cheng Y Z and Fang G J.Fabrication and electrical,photosensitive properties of p-poly(9,9-diethylfluorene)/n-silicon nanowire heterojunction[J]. J.Appl.Phys.,2007,102:083516(1-6)
    [26] Jan B, Frank F,Otwin B, et al.Electrical properties of nominally undoped silicon nanowires grown by molecular-beam epitaxy[J]. Appl.Phys.Lett., 2007, 90: 012105(1-3)
    [27]唐元洪,裴立宅.掺杂Si纳米线的光电特性[J].中国有色金属学报,2004,14:398-403
    [28] Tang Y H, Sun X H, A u F C K, et al. Microstructure and field-emission characteristics of boron-doped Si nanparticle chains [J]. Appl.Phys.Lett., 2001, 79 : 1673-1675
    [29] Hu S F, Wong W Z, Liu S S,et al. Room temperature two-terminal characteristics in silicon nanow ires [J]. Solid State Communication, 2003, 125: 351-354
    [30] Sacconi F,Persson M P,Povolotskyi M,et al. Electronic and transport properties of silicon nanowires[J]. J.Comput.Electron.,2007, 6:329–333
    [31]刘文平,李铁,杨恒,等.基于MEMS工艺制作的Si纳米线及其电学性质[J].半导体学报,2006,27:1645-1649
    [32]裴立宅,唐元洪,郭池,等.一维纳米材料的光学特性[J].人工晶体学报,2006,35(1):36-40
    [33] Bai Z G,Yu D P,Wang J J,et al.Synthesis and photoluminescence properties of smiconductor naowires [J]. Mater. Sci. Eng. B., 2000,72: 117-120
    [34] Qi J F,White J M, Belcher A M, Masumoto Y.Optical spectroscopy of silicon nanowires[J]. Chemical Physics Letters, 2003,72:763–766
    [35] Zeng X B, Liao X B, Wang B,et al.Optical properties of boron-doped Si nanowires[J].J.Cryst. Growth.,2004, 265: 94–98
    [36]李甲林,唐元洪,李小祥,李晓川.Si纳米线的发光性能研究及其应用前景[J].人工晶体学报,2008,37(4):901-907
    [37] Cui Y,Zhong Z H,Wang D L,et al.High performance silicon nanowire field effect transistors[J].Nano Lett.,2003,3:149–152
    [38] Fujiwara A, Inokawa H, Yamazaki K, et al. Single electron tunneling transistor with tunable barriers using silicon nanowire metal-oxide-semiconductor field-effect transistor[J]. Appl.Phys.Lett., 2006,88: 053121(1–3)
    [39] Tsakalakos L, Balch J, Fronheiser J,et al.Silicon nanowire solar cells[J].Appl.Phys.Lett., 2007,91:233117(1–3)
    [40]吴茵,胡崛隽,许颖,等.Si纳米线阵列的制备及其光伏应用[J].太阳能学报,2006,27:811-818.
    [41]裴立宅.Si纳米线纳米器件的研究进展[J].半导体光电,2007,28:156-160
    [42] Talin A A, Hunter L L, Leonard F,et al.Large area dense silicon nanowire array chemical sensors[J]. Appl.Phys.Lett., 2006,89:153102(1–3)
    [43] Yang C,Barrelet C J,Capasso F,et al. Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors[J].Nano Lett., 2006, 6:2929-2934
    [44] He R R ,Gao D, Fan R,et al.Si nanowire bridges in microt renches : integration of growth into device fabrication[J]. Advanced Materials, 2005,17:2098-2102
    [45] Dai D X,Liu l,Zhen SH,He S L.Design and fabrication of ultrasmall arrayed waveguide grating multiplexers based on Si nanowire waveguides[J]. Optoelectronics Letters,2007,3:7-9
    [46] Chan C K, Peng H L, Liu G,et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature nanotechnology,2008,3:31-35
    [47]彭英才,X.W.Zhao,范志东,白振华.Si纳米线的生长机制及其研究进展[J].真空科学与技术学报[J],2008,28:429-436
    [48]杨向龙,徐春花.气流对纳米氧化线制备的影响[J].中国科技信息,2009,4:56-57
    [49]郑立仁,黄柏标,尉吉勇.不同气氛下SiOx纳米线的制备及形貌、红外、光致发光研究[J].物理学报,2009,58:2306-2312
    [50]唐元洪.Si纳米线及Si纳米管[M].化学工业出版社,2006.20-56
    [51]王伟民.Al-Si合金熔体的微观结构及Si原子集团的演变行为[D].山东:山东工业大学材料加工工程,1998
    [52] Joonho B, Kulkarni N N, Zhou J P,et al.VLS growth of Si nanocones using Ga and Al catalysts[J].Journal of Crystal Growth.,2008,310:4407-4411
    [53] Iacopi F, Vereecken P M, Schaekers M,et al. Plasma-enhanced chemical vapour deposition growth of Si nanowires with low melting point metal catalysts: an effective alternative to Au-mediated growth[J]. Nanotechnology,2007, 18:505307(1-7)
    [54] Wacaser B A, Reuter M C, Khayyat M M,et al. Growth system, structure, and doping of aluminum-seeded epitaxial silicon nanowires[J]. Nano Lett., 2009, 9:3296-3301
    [55] Whang S J, Lee S J, Yang W F,et al.Complementary metal-oxide-semiconductor compatible Al-catalyzed silicon nanowires[J]. Electrochemical and Solid-State Letters,2007,10:E11-E13
    [56] Yewu Wang,Volker Schmidt, Stephan Senz, et al. Epitaxial growth of silicon nanowires using an aluminium catalyst[J]. Nature nanotechnology,2006,1:186-189
    [57]邢英杰,奚中和,俞大鹏,等.硅纳米线的固-液-固热生长及升温特性研究[J].电子与信息学报, 2003,25:259-262
    [58] Yu D P,Xing Y J,Hang Q L,et al.Controlled growth of oriented amorphous silicon nanowires via asolid-liquid-solid(SLS)mechanism[J].Physica E,2001,9:305-309
    [59]张帅.金属纳米晶体熔化的尺寸效应[D].吉林:吉林大学材料物理与化学,2004
    [60]陶杰,姚正军,薛烽.材料科学基础[M].北京:化学工业出版社,2006
    [61]西泽泰二著(郝士明译).微观组织热力学[M].北京:化学工业出版社,2006
    [62] Tang Y H,Zhang Y F,Lee C S,et al.Si nanowires synthesized from silicon monoxide by laser ablation[J].J.Appl.Phy.,1999,85:7981-7983

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700