用户名: 密码: 验证码:
铯光泵谱灯激励与弱磁检测电路的设计和实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在研究与磁现象有关的物理现象过程中,磁场测量技术是一种重要手段。当前,在工业生产、国防建设、科学研究、日常生活等领域,磁场测量技术起到非常重要的作用。所以,研制和改善高性能的磁场测量仪器有着重大的意义。
     光泵磁力仪是一种高灵敏度的磁测设备,它是从20世纪50年代发展起来的,它是以元素原子的能级在磁场中产生塞曼效应为基础,利用光泵作用和磁共振技术研制而成的。目前在宇宙空间磁测、地球物理研究、军事国防、矿藏探测等方面都得到了广泛应用。随着电子技术以及微处理器技术的发展,光泵磁场测量系统必定向数字化、小型化、智能化的方向发展。
     在地磁场测量方面,光泵磁力仪的应用前景是惹人注目的,光泵磁力仪是在质子磁力仪之后出现的,它的灵敏度很高,既能用来测量磁场的总强度,又能用来测量磁场的梯度,测量时没有零点漂移,所以不必严格控制方向,光泵磁力仪由于具备这些优点,从问世以来,一直得到世界各国的普遍重视,到现在为止研制成功的光泵磁测设备有多种类型,当前正处在深入研究和扩大使用阶段。
     本文首先介绍了磁场测量技术的发展历史及国内外的研究现状和发展趋势,接着介绍了常用的磁场测量方法及磁共振检测方法,论述了铯原子能级分裂、圆偏振光对铯原子的激发、光抽运效应及光泵磁强检测系统的工作原理。阐述了铯光谱灯的发光原理,分析了铯光谱灯的激励电路,确定了激励电路的参数并给出了激励电路的实际电路图,分析了振荡电路的工作电压及振荡回路的电感线圈工作原理,然后确定了铯光泵弱磁强度检测电路系统的方案,并给出了系统整体示意图,分析了高频激发振荡器、前置放大器、五级参差调谐放大电路及末级驱动电路的工作原理,并给出了各个部分的实际电路设计图。最后给出了铯光谱灯的调试及测试结果,高频激发振荡器的测试结果,前置放大器、五级参差调谐放大电路及末级驱动电路的测试结果。
The magnetic field measuring technique is an important mean to research the physical phenomena which relates to the magnetic phenomena. At present, in domains like scientific research, national defense development, industrial production and daily life, it is playing the very important role. Therefore, the research and the development of high performance's magnetic field measuring equipments has the profound significance.
     The optically pumped magnetometer is one kind of magnetic measurement equipment with high sensitivity which developed from the 1950s. It is based on the elemen atom energy level's zeem an effect in the magnetic field, made with optical pumping action and the magnetic resonance technology. The optically pumped magnetometer can not be ignored in the application prospect of the earth magnetic field measurement aspect. Appears after the proton magnetometer, the optically pumped magnetometer's sensitivity is extremely high, which belong to the high one in all kinds of magnetic field measurement devices put into the application. Based on all sorts of merits, the optically pumped magnetometer aroused universal attention around the world immediately since it has been published. It has been successfully developed to various types of optically pumped magnetic measurement equipment, and now it is in the phase of expanding the use and in-depth exploration.With the rapid development of electronics and microprocessor technologies, three major development trends in the aeromagnetic gradiometer survey system, including digitalization, miniaturization and intelligentize, have become clear.
     This paper, firstly, introduces the bloke diagram of the magnetic survey system. Base on the block diagram, the paper elaborates the optically pumped magnetometer's atomic physics principle, simultaneously, the character of magnetic field state selected cesium beam tube and optically pumped one are contrasted in this paper. The principles of improving the signal-to-noise ratio of optically pumped cesium beam tube are presented and the experiments of LD-pumped cesium beam tube are reported here.Then I analyze the working principles of the optically-pumped magnetometer, fluxgate magnetometer and proton magnetometer,and researched the signal detection technology of optically pumped magnetometer systematicly. It gives the overall structure diagram for the detection method of fast tracking with the doubled frequency error signal, and analyzes its working principle fully, then designs and produces the detection and control closed-loop system of the optically pumped magnetometer. Through the test we get the test data, and illustrate the effectiveness of the system design by analyzing the test results.
引文
[1]N Vansteenkiste, C Gerz, R Kaiser, L Hollberg, C Salomon and A Aspect. A frequency stabilized LNA laser at 1.083um:application to the manipulation of helium 4 atoms.J Phys Ⅱ France,2008:1407-1428.
    [2]李大明.弱磁场测量仪器进展和应用[J].电测与仪表,1985,1:36-37
    [3]吴天彪.我国地面重磁仪器的现状与前景.地质装备,2007,8(2):11-16.
    [4]Lutwak R,et al.Optically-Pumped Cesium Beam Frequency Standard for GPS-Ⅲ [Z] · Datum-Timing,Test &Measurement,2002
    [5]肖胜红,肖振坤,边少锋等.弱磁场检测方法与仪器研究[J].舰船电子工程,2006,26(4): 160-161
    [6]吴克跃.光泵磁共振法测地磁场垂直分量的改进方法.物理测试,2007,25(6):43-44
    [7]王书远.光泵磁共振实验中扫场及线圈产生水平场方向的判定.实验室研究与探索,2008,27(7):66-67.
    [8]祁香兵.数字氦光泵磁力仪的设计与实现:[学位论文],浙江大学,2007.
    [9]陈景标.弥漫激光抽运铯原子束频率标准[D].博士究生学位论文,北京:北京大学,1998
    [10]金惕若,肖良熙.利用磁通门磁强计精密补偿地磁场[J].计量学报,1981,(1):61-65
    [11]邹鹏毅,罗深荣,顾建松.两型光泵磁力仪比对试验结果及分析.声学与电子工程,2008(2): 35-37
    [12]MOON G, NOH H R. Analytic Calculation of Linear Susceptibility in Velocity-dependent Pump-probe Spectroscopy [J].Phys RevA,2008,78:032506.
    [13]Dando P A,Monteiro T S,Delande D,et al.Role of core-scattered closed orbits in nonhydrogenic atoms.Phys Rev A,1996,54(1):127-138
    [14]管志宁.地磁场与地磁勘探.北京:地质出版社,2005.(54-67)
    [15]张昌达,董浩斌.量子磁力仪评说[J].工程地球物理学报,2004,1(6):502-503
    [16]童诗白,华成英.模拟电子技术基础.北京:高等教育出版社.2001
    [17]汪华英,李兰秀.光泵磁共振信号幅度与射频场振幅的关系.物理实验,2005,25(7):30-32
    [18]王克廷,陈海军,韩如春等.卫星导航用铯原子束频标和小密封铯束管[C].北京香山科学会议第181次学术讨论会.2002
    [19]刘泉,陈永泰.通信电子线路(第2版)[M].武汉:武汉理工大学出版社,2005.
    [20]吴水根,谭勇华,周建平.铯光泵磁力仪(G880)在海洋工程勘探方面的应用.实验与技术.2006(5):5-9
    [21]稻叶保[日]著,何希才,尤克译.振荡电路的设计与应用[M].北京:科学出版社,2004:122-160
    [22]吴克跃.光泵磁共振法测地磁场垂直分量的改进方法.物理测试,2007,25(6):43-44
    [23]金惕若,瞿清昌,肖良熙.He4光泵梯度磁强计[J].地球物理学报,1982,25(1):88-89
    [24]A Cassimi, B Cheron,and J Hamel. He4 optical pumping with intensity modulated laser light. J Phys II France,1991:123-133
    [25]Du M L,Delos J B.Effect of closed classical orbits on quantum spectra:Ionization of atoms in a magnetic field.I.Physical picture and calculations.Phys Rev A,1988,38(4):1896—1912
    [26]吴小羊,习宇飞,程旭等.磁异常的分形研究及应用.勘探地球物理进展.2005(28):404-412
    [27]Douglas D McGregor.High-sensitivity helium resonance magnetometers. American Institute of Physics,2007,58 (6):1067-1076.
    [28]戴逸民.频率合成与锁相技术[M].合肥:中国科学技术大学版社,1995.40-72
    [29]光电二极管前置放大器设计http//www.guangdongdz.com.2008-7-2
    [30]徐仁伯.低压CMOS压控振荡器设计.SILICON VALLEY,2008,30-31.
    [31]杨卿.数字式磁测量仪的分析和设计,[学位论文].上海:上海交通大学,2003
    [32]Vanier J,Audoin C-The Quantum Physics of Atomic Frequency Standards[M]·Bristol:IOP Publishing Ltd,1989-
    [33]刘晓红,郭文胜,王合利,常青松.集成压控振荡器的可靠性设计与分析.半导体技术,2008,33(5):450-453.
    [34]L D Schearer,and Padetha Tin.Tunable lasers at 1080nm for helium optical pumping.1990 American Institute of Physics,1990,68 (3):943-949.
    [35]Ronald C,et al.A High-Performance Beam Tube for Cesium Beam Frequency Standards [J]·Hewlett-Packard Journal,1973,25(1):14-24
    [36]AT89S52 Data Sheet. Texas Instruments.1999.
    [37]Hupper B,Main J,Wunner GNonhydrogenic Rydberg atoms in a magnetic field:A rigorous semiclassical approach.Phys Rev A,1996,53(2):744-759
    [38]杨国田白焰董玲.51单片机实用C语言程序设计与典型实例中国电力出版社2009年07月
    [39]Zhao L B,Du M L.Inelastic scattering effects in recurrence spectra of He atoms in a magnetic field.Phys Lett A,2007,363(5-6):453-457
    [40]王君,凌振宝.传感器原理及检测技术[M].吉林:吉林大学出版社,2002:29-42
    [41]Li T C, Li M S, Huang B Y. Progress on the construction of an atomic Cesium fountain at NIM[A].Proc of 2001 IEEE International Frequency Control Symposium[C]. Seattle: 2008,101-104.
    [42]Clairon A, Laurent P, Santarelli G, et al. A Cesium fountain frequency standard: preliminary results[J].IEEE Inst and Meas,1995,44(2):128-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700