用户名: 密码: 验证码:
四氟苯甲酰异亮氨酸二丁基锡酯(FPLDBT)诱导非小细胞肺癌A549细胞凋亡及其相关机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和研究目的:
     肺癌是当今世界第一癌症杀手,在中国,其发病率与死亡率高居榜首,成为严重威胁人类健康和生命的一种疾病。按组织学类型可将肺癌分为小细胞肺癌(small cell lung cancer, SCLC)和非小细胞肺癌(non-small cell lung cancer, NSCLC)两大类。其中非小细胞肺癌(NSCLC)占肺癌的80%以上,而且就诊时多为Ⅲ~Ⅳ期,失去了手术机会,而在可手术的患者中,术后复发、转移率高达50%以上,且对放疗很不敏感。因此,全身化疗是治疗非小细胞肺癌的重要手段。目前所用化疗药物在化疗初期效果明显,可有效诱导肺癌细胞凋亡,但毒副作用严重且易产生耐药性,从而导致化疗失败。因此,寻找高效、毒副作用小、能克服耐药的新型化疗药物成为当前肺癌治疗亟待解决的主要问题之一。
     综上所述,本课题研究目的在于:以非小细胞肺癌A549细胞为研究对象,对合成的有机锡小分子化合物FPLDBT的体外抗肿瘤活性进行研究,进而探讨其对体外培养的非小细胞肺癌A549细胞的生长抑制作用及凋亡的分子机制,希望通过这些研究可以为治疗肺癌和开发新型肺癌化疗药物提供一定的理论依据,做出积极的贡献。
     研究方法:
     1.MTT法检测细胞存活率,对FPLDBT进行初步筛选。
     2.细胞凋亡情况的检测:
     —倒置相差显微镜观察细胞形态变化;
     —Hoechst 33258荧光染色,并结合荧光显微镜观察细胞核片段化;
     —吖啶橙(AO)荧光染色,结合荧光显微镜观察进一步检测细胞凋亡情况;
     —活性氧(ROS)水平的变化,用荧光分光光度计检测细胞内活性氧的含量;
     —用Nucleosome ELISA试剂盒检测细胞凋亡率。
     3.细胞周期影响的检测:
     —流式细胞技术检测FPLDBT对细胞周期的影响。
     4.FPLDBT对caspase-3,-4激活情况的检测,方法如下:
     —用caspase-3,-4酶活性检测试剂盒分析caspase-3,-4酶活性变化;
     —用caspases抑制剂检测caspase-3,-4对FPLDBT细胞生长的影响。
     研究结果:
     1.FPLDBT抗凋亡活性检测结果(MTT法检测细胞存活率结果)
     —FPLDBT对A549细胞存活率的影响:
     结果显示:在48小时内,FPLDBT显著降低了A549细胞的存活率,对A549有显著生长抑制作用,并呈现明显的剂量效应。
     2.FPLDBT诱导A549细胞凋亡的研究结果
     —倒置相差显微镜观察细胞形态变化:
     结果表明:0.8μM/L的FPLDBT处理A549细胞48小时后,倒置相差显微镜下观察发现,细胞皱缩,空泡化明显,产生凋亡小体,并从皿底脱落死亡,细胞呈现出典型的凋亡形态学特征;而0.1% DMSO溶剂对照组与对照组相比,细胞形态无明显变化。
     —Hoechst 33258染色结合荧光显微镜检测细胞核片段化结果:结果显示:0.8μM/L的FPLDBT处理A549细胞48小时后,荧光显微镜下观察发现,细胞核呈蓝色,出现核片段化现象,凋亡小体清晰可见,呈现典型的凋亡形态学特征;而DMSO溶剂对照组与对照组相比,细胞核呈均匀亮蓝色,形态无明显变化。
     —吖啶橙(AO)染色结合荧光显微镜检测染色质凝集结果:结果显示:0.8μM/L的FPLDBT处理A549细胞48小时后,荧光显微镜下观察发现,染色质凝集及边缘化,并有凋亡小体出现,呈现典型的凋亡形态学特征;而DMSO溶剂对照组与对照组相比,染色质无明显变化。
     —A549细胞内活性氧含量的测定:结果表明:0.8μM/L的FPLDBT处理A549细胞48小时后,结合荧光分光光度计检测其细胞内活性氧的含量发现,与对照组细胞相比,细胞内活性氧含量显著增加。
     —Nucleosome ELISA检测核小体水平变化结果:结果表明:0.8μM/L的FPLDBT处理A549细胞48小时后,Nucleosome ELISA试剂盒检测发现,与对照组细胞相比,细胞内核小体水平显著升高。
     3.FPLDBT对A549细胞周期的影响
     —流式细胞技术检测细胞周期分布结果:结果显示:通过流式细胞仪检测细胞周期分布发现,与对照组相比,0.8μM/L的FPLDBT作用48小时后可将绝大部分A549细胞周期阻滞在G1期,不能进入S期。
     4.FPLDBT诱导A549细胞凋亡的相关分子机制研究结果
     —caspases酶活性检测:结果表明:在细胞凋亡过程中,FPLDBT同时激活了caspase-3,-4,其中对caspase-4的激活程度强于caspase-3。
     —caspases抑制剂对FPLDBT诱导A549细胞凋亡的影响:加入caspases抑制剂后,凋亡ELISA试剂盒检测细胞凋亡率,发现:与FPLDBT处理的细胞相比,caspase-4 inhibitor(Z-LEVD-FMK)显著阻滞了FPLDBT诱导的凋亡,而caspase-3 inhibitor(Z-DEVD-FMK)虽然也抑制了FPLDBT诱导的凋亡,但程度较弱。
     研究结论:
     1.FPLDBT以浓度依赖的方式显著降低了A549细胞的存活率,抑制了A549细胞的增殖。
     2.FPLDBT可使细胞周期阻滞在G1期。
     3.FPLDBT可有效诱导A549细胞凋亡,此凋亡过程由ROS和caspases共同参与。
     4.根据caspases在FPLDBT诱导A549细胞的凋亡过程中所起的作用,我们推测此凋亡过程以内质网凋亡途径为主。
Background and objective:
     Lung cancer is the most dangerous cancer throughout the world, and the incidence and death rate of lung cancer has ranked the first in China. According to histological type, lung cancer includes two main types:small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Therefore, it is particularly important for development and research of chemotherapeutic drugs.Chemotherapeutics is the most important treatment for lung adenocarcinoma because it is usually at the later stage when we find this kind of disease in the sufferers, at this moment, NSCLC becomes not suitable for surgery, and not sensitive to radiotherapy. At present, the frequently-used drugs for lung cancer chemotherapy can induce apoptosis of lung cancer cells, but strong toxicity side effect and drug resistance may cause failure of chemotherapy. Therefore, looking for the chemotherapeutic drugs which has high efficiency, minor toxicity, less side effect and ability to overcome multi-drug resistance is one of the urgent problems for researchers to be settled.
     In summary, A549 cells were selected as experimental cells to investigate in vitro screening of apoptosis-inducing drugs and molecular mechanisms of apoptosis. As well as the synthesis of organotin compounds FPLDBT anti-tumor activity in vitro study, and then, to explore the growth inhibition by FPLDBT and the molecular mechanisms of FPLDBT-induced apoptosis in A549 cells in vitro. We hoped that these studies could be in the treatment of lung cancer at the cellular level and the development of new chemotherapeutic agents for the treatment of lung cancer to provide a more complete theoretical basis, and make a positive contribution.
     Methods:
     1.MTT assay on cell viability, by which the FPLDBT was screened initially.
     2.Detection of cell apoptosis:
     -Observation of cell morphological changes by Phase Contrast Microscope.
     -Observation of nuclear fragmentation by Hoechst 33258 staining combined with Fluorescence Microscopy.
     -Observation of morphological changes of apoptosis by Acridine orange (AO) fluorescence staining combined with Fluorescence Microscopy.
     -Detection of the activity of ROS in A549, the content of ROS was determined by colorimetric assay.
     -Detection of apoptosis rates by Nucleosome ELISA assay kits.
     3.Detection of changes in cell cycle distribution:
     -Flow cytometry was used to detect the changes about the cell cycle of A549 after treated with FPLDBT.
     4. Methods for determining whether caspase-3,-4 were activated by FPLDBT, as follows:
     -Analyzing caspase-3,-4 activities by caspase-3,-4 colorimetric assay kits.
     -Identification the influences of caspase-3,-4 on apoptosis induced by FPLDBT with caspase inhibitors.
     Results:
     1.The test results of anti-tumor activity of FPLDBT (the results of MTT assay on cells livability)
     -Influences of FPLDBT on viability of A549 cell: The results showed that:Within 48 hours, FPLDBT significantly reduced the survival rate of the A549 cell and significantly inhibited the growth of the A549 cell in a dosage dependent manner.
     2. Results of FPLDBT-induced apoptosis in A549 cells
     -Observation of morphological changes by Fluorescent inverted phase contrast microscope: The results showed that:After A549 cells were exposed to 0.8μM/L FPLDBT for 48 hours, cell morphological changes by Phase Contrast Microscope showed that cell shrinkage, vacuolization evident, apoptotic bodies occurred, and many cells detached from the dishes, showing a typical morphological characteristics of apoptosis; While treated with 0.1% DMSO, cell morphology had no obvious changes.
     -Results of detection of nuclear fragmentation by Hoechst 33258 staining combined with fluorescence microscopy: The results showed that:After A549 cells were exposed to 0.8μM/L FPLDBT for 48 hours, cell morphological changes by fluorescence microscopy revealed a uniform light blue nuclei, chromatin condensation, apoptotic bodies clearly visible, showing the typical morphological characteristics of apoptosis; While the DMSO group and the control group had no obvious change in cell nuclear morphology.
     -Results of detection of cell apoptosis by Acridine orange (AO) staining combined with fluorescence microscopy: The results showed that:After A549 cells were exposed to 0.8μM/L FPLDBT for 48 hours, cell morphological changes by fluorescence microscopy showed that pehromatin condensation and marginalization, emerging nuclei fragmentation, apoptotic bodies clearly visible, showing the typical morphological characteristics of apoptosis; While the DMSO group and the control group had no significant change in cell morphology.
     -The results of the activity test of ROS: The results showed that:When A549 cells were treated with 0.8μM/L FPLDBT for 48 hours, compared with the control group, the activity of ROS increased a lot.
     -Results of Nucleosome ELISA assay: The results showed that:When A549 cells were treated with 0.8μM/L FPLDBT for 48 hours, compared with the control group, FPLDBT could effectively induce apoptosis in A549 cells, and showed a dose-time-dependent manner.
     3.Influence of FPLDBT on the cell cycle of A549
     -Influence of FPLDBT on A549 cells cycle distribution: The results showed that:Flow cytometry analysis demonstrated that cells, after being treated with FPLDBT (0.8μM/L) for 48 hours, compared with the control group, most were blocked in G1 phase, could not enter S phase, in a time-dependent manner.
     4. Research findings of FPLDBT-induced apoptosis in A549 cells and its related molecular
     -Assay results of activities of caspases: The results showed that:In the apoptotic process, FPLDBT activated caspase-3 and-4, in which the activation of caspase-3 level was weaker than caspase-4.
     -Detection influences of caspases inhibitors on FPLDBT-induced apoptosis of A549 cells: Compared to 0.8μM/L FPLDBT treatment group, caspase-4 inhibitor (Z-LEVD-FMK) significantly reversed the FPLDBT-induced apoptosis in A549 cells. And caspase-3 inhibitor (Z-DEVD-FMK) reversed partially the FPLDBT-induced apoptosis.
     Conclusion:
     1. FPLDBT could significantly inhibit the proliferation of A549 cells in a concentration-dependent manner.
     2. FPLDBT induced A549 cells arrest at G1.
     3. FPLDBT could effectively induce A549 cells apoptosis in a dose-time-dependent manner. ROS and caspases might participate in this process of apoptosis.
     4. According to the effect of caspases in the process of apoptosis induced by FPLDBT in A549 cells, we speculated that the endoplasmic reticulumial pathway might play a major role in this process of apoptosis.
引文
[1]黄艾弥,韩宝惠.晚期非小细胞肺癌的维持治疗进展.中国肺癌杂志,2009,12(4):337-341.
    [2]TonaniM, Carvalho EC. Cancer risk and preventive behavior:persuasion as an intervention strategy [J].Rev Lat Am Enfermagem,2008,16(5):864-870.
    [3]World Health Organization. World cancer report [R].Geneva:WHO,2003.
    [4]我国恶性肿瘤死亡率流行病学特征分析.中国健康教育,2009,25(4):246.
    [5]Kerr J, Wyllie A, Currie A. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer,1972,26(4):239-257.
    [6]Searle J, Lawson TA, Abbott PJ, et al. An electron microscope study of the mode of cell death induced by cancer chemotherapeutic agents in populations of proliferating normal and neoplastic cells [J]. J Pathol,1975,116(3):129-138.
    [7]Nagata S, Gotstein P. The fas death factor [J].Science,1995,267(5203):1449-1456.
    [8]Kimura K, Sasano H, Shimosegawa T, Mochizuki S,Nagura H and Toyota T. Ultrastructure of cells undergoing apoptosis. Vitam Horm,2000,58:257-266.
    [9]Hacker G. The morphology of apoptosis. Cell Tissue Res,2000,301(1):5-17.
    [10]Trump BF, Berezesky IK, Chang SH, Phelps PC. The pathways of cell death:oncosis, apoptosis, and necrosis. Toxicol Pathol,1997,25(1):82-86.
    [11]Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol, 1995,146(1):3-15.
    [12]Mountz JD, Wu J, Zhou T, Hsu HC.Cell death and longevity:implications of Fas-mediated apoptosis in T-cell senescence. Immunol Rev,1997,160:19-30.
    [13]Zidar N, Dolenc-Strazar Z, Jeruc J, Stajer D. Immunohistochemical expression of activated caspase-3 in human myocardial infarction. Virchows Arch,2006,448(1):75-79.。
    [14]Zimmermann KC, Bonzon C, Green DR. The machinery of programmed cell death. Pharmacol Ther,2001,92(1):57-70.
    [15]Afford S, Randhawa S.Demystified Apoptosis. J Clin Pathol:Mol Pathol,2000,53(2): 55-63.
    [16]Rao RV, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ,2004,11(4):372-380.
    [17]Ashkenazi A, Dixit VM. Death receptors:signaling and modulation. Science,1998, 281(5381):1305-1308.
    [18]Screaton GR, Mongkolspaya J, XU XN, Cowper AE, McMichael AJ, Bell JI. Curr Biol, TRICK2, a new alternatively spliced receptor that transduces the cytotoxic signal from TRAIL. Curr Biol,1997,7(9):693-696.
    [19]Pan G, O'Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J, Dixit VM. The receptor for the cytotoxic ligand TRAIL. Science,1997,276(5309):111-113.
    [20]Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM.An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science,1997,277(5327):815-818.
    [21]Petak I, Houghton JA. Shared pathways:death receptors and cytotoxic drugs in cancer therapy. Pathology Oncology Research,2001,7(2):95-106.
    [22]Kumar S, Colussi PA. Prodomains-adaptors-oligomerization:the pursuit of caspase activation in apoptosis. Trends Biochem Sci,1999,24(1):1-4.
    [23]Salvesen GS,Renatus M. Apoptosome:the seven-spoked death machine. Dev Cell,2002, 2(3):256-257.
    [24]Gupta S.Molecular steps of death receptor and mitochondrial pathways of apoptosis. Life Sci,2001,69(25-26):2957-2964.
    [25]Sartorius U, Schmitz 1,Krammer PH. Molecular mechanisms of death-receptor-mediated apoptosis. Chembiochem,2001,2(1):20-29.
    [26]Kim PK, Dutra AS, Chandrasekharappa SC, Puck JM. Genomic structure and mapping of human FADD, an intracellular mediator of lymphocyte apoptosis. J Immunol,1996,157(12): 5461-5466.
    [27]Weber CH, Vincenz C. The death domain superfamily:a tale of two interfaces? Trends Biochem Sci,2001,26(8):475-481.
    [28]Eberstadt M, Huang B, Chen Z, Meadows RP, Ng SC, Zheng L, Lenardo MJ, Fesik SW. NMR structure and mutagenesis of the FADD (Mortl)death-effector domain. Nature,1998, 392(6679):941-945.
    [29]Creagh EM, Conroy H, Martin SJ. Caspase activation pathways in apoptosis and immunity [J].Immunol Rev,2003,193:10-21.
    [30]Li H, Zhu H, Xu CJ, Yuan J.Cleavage of BID by caspase-8 mediates mitochondrial damage in the Fas pathway of apoptosis [J].Cell,1998,94(4):491-501.
    [31]Adrain C, Martin SJ. The mitochondrial apoptosome:a killer unleashed by the cytochrome seas [J].Trends Biochem Sci,2001,26(6):390-397.
    [32]李捷萌,陈彦青,刘荣国.线粒体凋亡途径与Bcl-2家族蛋白研究进展[J].医学综述,2008,14(4):489-490.
    [33]郑训针,张广森.线粒体介导的凋亡途径及调控机制[J].中华血液学杂志,2001,22(1):52-54.
    [34]Saleh A, Srinivasula SM, Acharya S, et al. Cytochrome C and dATP mediated oligomerization of Apaf-1 is a prerequisite for procaspase activation. J Biol Chem,1999, 274(25):17941-17945.
    [35]Yoshide B, Kang YY, Yoshide R, et al. Apaf-1 is required form itochondrial pathways of apoptosis and brain development[J]. Cell,1998,94:739-750.
    [36]Orrenius S.Mitochondrial regulation of apoptotic cell death [J].Toxi collett,2004,149(1-3): 19-23.
    [37]Slee EA, Harte MT, Kluck RM.Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES,Green DR, Martin SJ. Ordering the Cytochrome C initiated caspase cascade:hierarchical activation of caspases-2,-3,-6,-7,-8 and-10 in a caspase-9 dependent manner [J].J Cell Biol.,1999,144(2):281-292.
    [38]Miramar MD, Costantini P, Ravagnan L, et al.NADH oxidase activity of mitochondrial apoptosis-inducing factor [J].J Biol Chem.,2001,276(19):16391-16398.
    [39]Kroemer G, Zamzami N, Susin SA. Mitochondrial control of apoptosis. Immtmol. Today, 1997,18(1):44-51.
    [40]Crompton M. Mitochondrial intermembrane junctional complexes and their role in cell death. J Physiol,2000,529 Ptl:11-21.
    [41]Tan CB, Dlugosz PJ, Peng J, et al. Auto-activation of the apoptosis protein BAX increases mitochondrial membrane permeability and is inhibited by BCL-2.J Biol Chem,2006, 281(21):14764-14775.
    [42]Shimizu S, Ide T, Yanagida T, et al. Y. Electrophysiological study of a novel large pore formed by Bax and the voltagedependent anion channel that is permeable to cytochrome c. J Biol Chem.2000,275(16):12321-12325.
    [43]Crompton M. Bax, Bid and the permeabilization of the mitochondrial outer membrane inapoptosis. Curr Opin Cell Biol,2000,12(4):414-419.
    [44]Antonsson B, Martinou JC. The Bcl-2 protein family. Exp Cell Res,2000,256(1):50-57.
    [45]Guo B, Godzik A, Reed JC.Bcl-G, a novel pro-apoptotic member of the Bcl-2 family. J Biol Chem,2001,276(4):2780-2785.
    [46]Ke N, Godzik A, Reed JC.Bcl-B, a novel Bcl-2 family member that differentially binds and regulates Bax and Bak. J Biol Chem,2001,276(16):12481-12484.
    [47]Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science,2000,288(5468):1053-1058.
    [48]Wang X-Z, Lawson B, Brewer JW, et al. Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153).Mol Cell Biol,1996,16:4273-4280.
    [49]Baichwal VR, Baeuerle PA. Activate NF-kappa B or die? Curr Biol,1997,7(2):94-96.
    [50]Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum:coordination of gene transcriptional and translational controls. Genes Dev,1999,13(10):1211-1233.
    [51]Zinszner H, Kuroda M, Wang XZ, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev,1998,12(7):982-995.
    [52]Rao RV, Hermel E, Castro-Obregon S, et al.Coupling endoplasmic reticulum stress to the cell death program:mechanism of caspase activation [J].J Biol Chem,2001,276(36): 33869-33874.
    [53]Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J. Caspase12 mediates endoplasmic reticulum specific apoptosis and cytotoxicity by amyloid-beta. Nature.,2000, 403(6765):98-103.
    [54]Junichi Hitomi, Taiichi Katayama, Yutaka Eguchi, Takashi Kudo, et al. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Aβ-induced cell death. JCB, 2004,165(3):347-356.
    [55]Lin XY, Choi MS, Porter AG. Expression analysis of the human caspase-1 subfamily reveals specific regulation of the CASP5 gene by lipopolysaccharide and interferon-gamma. J Biol Chem,2000,275(51):39920-39926.
    [56]Rao RV, Peel A, Logvinova A, del Rio G, Hermel E, Yokota T, Goldsmith PC, Ellerby LM, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78.FEBS Lett,2002(2-3):122-128.
    [57]Nakagawa T, Yuan JY. Cross-talk between two cysteine protease families activation of caspase-12 by calpain in apoptosis. J Cell Biol,2000,150(4):887-894.
    [58]Gupta S.Molecular signaling in death receptor and mitochondrial pathways of apoptosis [J]. Int J Oncol,2003,22(1):15-20.
    [59]McConkey DJ, Nutt LK. Calcium flux measurements in apoptosis. Methods Cell Biol,2001, 66:229-246.
    [60]Oyadomari S,Takeda K, Takiguchi M, Gotoh T, Matsumoto M, Wada I, Akira S, Araki E, Mori M. Nitric oxide-induced apoptosis in pancreatic beta cells is mediated by the endoplasmic reticulum stress pathway. Pro Nan Acad Sol USA,2001,98(19):10845-10850.
    [61]Xu Q, Reed JC. Bax inhibitor-1,a mammalian apoptosis suppressor identified by functional screening in yeast. Mol Cell,1998,1(3):337-346.
    [62]Ng FW, Nguyen M, Kwan T, Branton PE, Nicholson DW, Cromlish JA, Shore GC.p28 Bap31,a Bcl-2/Bcl-XL-and procaspase-8-associated protein in the endoplasmic reticulum. J Cell Biol,1997,139(2):327-338.
    [63]Ng FW, Shore GC.Bcl-XL cooperatively associates with the Bap31 complex in the endoplasmic reticulum, dependent on procaspase-8 and Ced-4 adaptor. J Biol Chem,1998, 273(6):3140-3143.
    [64]Nguyen M, Breckenridge DG, Ducret A, Shore GC. Caspase-resistant BAP31 inhibits Fas-mediated apoptotic membrane fragmentation and release of cytochrome c from mitochondria. Mol Cell Biol,2000,20(18):6731-6740.
    [65]Torgler CN, de Tiani M, Raven T, Aubry JP, Brown R, Meldrum E. Expression of bak in S. pombe results in a lethality mediated through interaction with the calnexin homologue Cnxl. Cell Death Differ,1997,4(4):263-271.
    [66]Kuo TH, Kim HR, Zhu L, Yu L, Lin HM, Tsang W.Modulation of endoplasmic reticulum calcium pump by Bcl-2. Oncogene,1998,17(15):1903-1910.
    [67]Hacki J, Egger L, Monney L, Conus S,Rosse T, Fellay I, Borner C.Apoptotic crosstalk between the endoplasmic reticulum and mitochondria controlled by Bcl-2.Oncogene,2000, 19(19):2286-2295.
    [68]Nakamura K, Bossy-Wetzel E, Burns K, Fadel MP, Lozyk M, Goping IS,Opas M, Bleackley RC, Green DR, Michalak M. Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis. J Cell Biol,2000,150(4):731-740.
    [69]Breckenridge DG, Stojanovic M, Marcellus RC, Shore GC. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol [J].J Cell Biol,2003,160(7):1115-1127.
    [70]Breckenridge DG, Ngnyen M, Kuppig S,Reth M, Shore GC.The proeaspase-8 isoform, procaspase-8L, recruited to the BAP31 complex at the endoplasmic retieulum. Proc Natl Acad Sci USA,2002,99(7):4331-4336.
    [71]Yoneda T, Imaizumi K, Oono K, Yui D, Gomi F, Katayarna T and Tohyama M. Activation of caspase-12,all endoplaatie reticulum (ER) resident caspase,through tumor necrosis factor receptor-associated factor 2-dependent mechanism in rasponse to the ER stress. J Biol Chem, 2001,276(17):13935-13940.
    [72]Jacobson MD, Weil M, Raff MC, et al. Programmed cell death in animal development. Cell, 1997,88(3):347-354.
    [73]王琪琳,桑青,曲爱琴.海带多糖在诱导肿瘤细胞凋亡机制方面的研究.安徽农业科学,2009,37(9):4128-4130.
    [74]Concha NO, Abdel-Meguid SS.Controlling apoptosis by inhibition of caspases. Curr Med Chem,2002,9(6):713-726.
    [75]王玉,孙黎光,夏春辉.Caspase介导的Fas凋亡途径.世界华人消化杂志,2006,14(36):3439-3442.
    [76]周光飚,张广森,周见远.Caspase家族与细胞凋亡调控.国外医学分子生物学分册,2000, 33(3): 167-170.
    [77]Thornberry NA,Lazebnik Y. Caspases:enemies within [J].Science,1998,281(5381): 1312-1316.
    [78]Cohen GM. Caspases:the executioners of apoptosis. Biochem J,1997,326(Ptl):1-16.
    [79]龙慧,李景和.TGF-β与Caspase在肿瘤细胞凋亡中的作用.现代生物医学进展,2009,9(13):2576-2578.
    [80]Takahashi A. Caspase:executioner and undertaker of apoptosis. Int J Hematol,1999,70(13): 226-232.
    [81]Martin DA, Siegel RM, Zheng LX, et al. Membrane oligomerization and deavage activates the caspase-8(FLICE/MACH1) death signal. J Bio Chem,1998,273(8):4345-4349.
    [82]Srinivasula SM,Ahmad M,Fernandes-Alnemri T,Alnemri ES.Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell,1998,1(7):949-957.
    [83]Van de Craen M, Van den Brande I, Declercq W, Irmler M, Beyaert R, Tschopp J, Fiers W, Vandenabeele P. Cleavage of caspase family members by granzyme B:a comparative study in vitro [J]. Eur J Immunol,1997,27(5):1296-1299.
    [84]Zhou Q, Salvesen GS.Activation of procaspase-7 by serine proteases includes a non-canonical specificity [J].Biochem J,1997,324(Pt2):361-364.
    [85]Raff M. Cell suicide for beginners. Nature,1998,396 (6707):119-122.
    [86]翟中和,王喜忠,丁明孝.细胞生物学.北京:高等教育出版社.2000,358.
    [87]Zhou JX, Niehans GA, Shar A, Rubins JB,Frizelle SP, Kratzke RA. Mechanisms of G1 checkpoint loss in resected early stage non-small cell lung cancer.Lung Cancer,2001,32(1): 27-38.
    [88]Feakins RM, Nickols CD, Bidd H, et al. Abnormal expression of pRb, p16, and cyclin D1 in gastric adenocarcinoma and its lymph node metastases:Relationship with pathological features and survival. Hum Pathol,2003,34(12):1276-1282.
    [89]Rose SL, Buller RE. The role of p53 mutation in BRCA1-associated ovarian cancer. Minerva Ginecol,2002,54(3):201-209.
    [90]Bartek J, Lukas C, Lukas J. Checking on DNA damage in S phase [J].Mol Cell Biol,2004, 5(10):792-804.
    [91]Osborn AJ, Elledge SJ, Zou L. Checking on the fork:the DNA-replication stress-response pathway [J].Trends Cell Biol,2002,12(11):509-516.
    [92]Pietenpol JA, Stewart ZA. Cell cycle checkpoint signaling:cell cycle arrest versus apoptosis. Toxicology,2002,27(181-182):475-481.
    [93]Sanchez I, Dynlacht BD. New insights into cyclins, CDKs, and cell cycle control [J].Semin Cell Dev Biol,2005,16(3):311-321
    [94]Kraft C, Herzog F, Gieffers C, et al. Mitotic regulation of the human anaphase-promoting complex by phosphorylation. EMBO J,2003,22(24):6598-6609.
    [95]李志琴,章静波.细胞周期调控与肿瘤癌症.进展杂志,2004,2(2):146-150.
    [96]CUSSLER EL, MOGGRIDGE GD. Chembal Product De-stn. UK [M].Cambrdge Unbersity Press,2001,2.
    [97]Clarke MJ, Zhu F, Frasca DR. Non-platinum chemotherapeutic metallopharmaceuticals. Chem Rev,1999,99(9):2511-2534.
    [98]HUBER F, BARBIER IR. In Metal Complexes in Cancer Chemotherapy, Keppler B(ed) [M].VCH:Weinheim, New York,1993,351.
    [99]CROWE AJ. In Metal Complexes in Cancer Chemotherapy, Keppler B(ed) [M].VCH: Weinheim, New York,1993,369.
    [100]Crowe AJ, Smith PJ, Atassi G. Investigations into the antitumour activity of organotin compounds. I. Diorganotin dihalide and di-pseudohalide complexes [J].Chem Biol Interact, 1980,32(1-2):171-176.
    [101]Kieran CM, Stephen JB, et al. Organotin Biocides PartⅡ:Triphenyltin Benzoates: Electronic versus steric contro 1 of structure. J Chem Soc (D).1988,1259-1266.
    [102]Singh Har Lal, Varshney S,Varshney AK. Synthesis and spectroscopic studies of organotin (IV) complexes of biologically active schiff bases derived from sulpha drugs [J].Appl Organometal Chem,2000,14:212-217.
    [103]Meinema HA, et al. Res Si Ge Sn Pb Comp,1985,8:157.
    [104]Crowe AJ, Smith PJ, Atassi G. Chem. Biol. Interact,1980,32:171.
    [105]Barbieri R, Pellerito L, Ruisi G, Lo Giudice M J. Inorg Chim Acta [J].1982,66:39.
    [106]胡春等.中国药学杂志[J].1992,8:455.
    [107]Narayanan VL. "Tin-based antitumour drugs", Berlin:Springer-verlag [M].1990,201.
    [108]Gielen M, Ma H, Bouhdid A, Dalil H, Biesemans M, Willem R. Di-n-Butyl-, Tri-n-Butyl-and Triphenyltin dl-Terebates:Synthesis, Characterization and In Vitro Antitumour Activity. Met Based Drugs,1997,4(4):193-197.
    [109]Nath M, Yadav R, Gielen M. Appl Organomet Chem [J].1997,11:727-732.
    [110]Nath M, Goyal S, Eng G. Bull Chem Soc Jpn [J].1996,69:605-611.
    [111]Talal AK, Al-Allaf, Luay J, et al. Organotin (Ⅳ) complexes with various donor ligands and their cytotoxicity against tumour cell lines, part (Ⅰ):r2SnC12 with schiff bases; Unusual CN bond cleavage of the bases and X-ray structures of the ionic products formed [J].Appl Organometal Chem,2003,17:891-897.
    [112]Zuo DS, Jiang T, Guan HS, et al. Chi J Chem [J].2001,19:1141-1145.
    [113]李青山,黄计军,杨频等.六配位R2SnC12(N-N)型新配合物的合成及其体外抑癌活性[J].中国药物化学杂志,1999,9(4):297-302.
    [114]Hickman J. Apoptosis and tumourigenesis. Curr Opin Genet Dev,2002,12:67-72.
    [115]Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancar. Nature,2001,411 342-348.
    [116]Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science,1995, 267(5203):1456-1462.
    [117]Lang R. Rapid colorimetric assay for cell growth and surrvial:Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability [J].J Immunol Methods,1986,89(2):271-277.
    [118]Twentyman PR, Luscombe M. A study of some variables in a tetrazolium dye (MTT) bassed assay for cell growth and chemosensitxity [J].BRJ Cancer,1987,56(3):279-285.
    [119]Banasiak D, Barnetson AR, Odell RA, Mameghan H, Russell PJ. Comparison between the clonogenic, MTT, and SRB assays for determining radiosensitivity in a panel of human bladder cancer cell lines and a ureteral cell line. Radiat Oncol Investig,1999,7(2):77-85.
    [120]Froscio SM, Fanok S, Humpage AR. Cytotoxicity screening for the cyanobacterial toxin cylindrospermopsin. J Toxicol Environ Health A,2009,72(5):345-349.
    [121]Vinella D, D'Ari R. Overview of controls in the Escherichia coli cell cycle. Bioessays,1995 17(6):527-536.
    [122]Norbury C, Nurse P. Animal cell cycles and their control. Ann Rev Biochem,1992,61: 441-470.
    [123]Macaluso M, Montanari M, Cinti C, Giordano A. Modulation of cell cycle components by epigenetic and genetic events. Semin Oncol,2005,32(5):452-457.
    [124]Kuo PL, Hsu YL, Lin TC, Chang JK, Lin CC.Induction of cell cycle arrest and apoptosis in human non-small cell lung cancer A549 cells by casuarinin from the bark of Terminalia arjuna Linn. Anticancer Drugs,2005,16(4):409-415.
    [125]D'Agnano I, Antonelli A, Bucci B, Marcucci L, Petrinelli P, Ambra R, Zupi G, Elli R. Effects of poly(ADP-ribose) polymerase inhibition on cell death and chromosome damage induced by VP16 and bleomycin. Environ Mol Mutagen,1998,32(1):56-63.
    [126]Potter AJ, Rabinovitch PS. The cell cycle phases of DNA damage and repair initiated by topoisomerase II-targeting chemotherapeutic drugs. Mutat Res,2005,572(1-2):27-44.
    [127]Cheng CC, Yang SM, Huang CY, Chen JC, Chang WM, Hsu SL. Molecular mechanisms of ginsenoside Rh2-mediated G1 growth arrest and apoptosis in human lung adenocarcinoma A549 cells. Cancer Chemother Pharmacol,2005,55(6):531-540.
    [128]欧阳高亮,李祺福.细胞凋亡与肿瘤的发生发展和治疗.国外医学肿瘤学分册,2000, 27(5): 266-268.
    [129]Ward TH, Cummings J, Dean E. Biomarkers of apoptosis. Br J Cancer,2008,99(6) 841-846.
    [130]Martindale J L, Holbrook NJ. Cellular response to oxidative strees:signaling for suicide and survival [J],J Cell Physio,2002,192(1):1-15.
    [131]Michael T, Madigan, John M. et al. Biology of Microorganisms. Upper Saddle River, NJ Prentice Hall,2003,(10):161-166
    [132]Dypbukt JM, Ankarcrona M, Burkitt M, Sjoholm A, Strom K, Orrenius S,Nicotera P. Different prooxidant levels stimulate growth, trigger apoptosis, or produce necrosis o insulin-secreting RINm5F cells. The role of intracellular polyamines. J Biol Chem,1994 269(48):30553-30560.
    [133]Perchellet EM, Wang Y, Weber RL, Sperfslage BJ, Lou K, Crossland J, Hua DH Perchellet JP.Synthetic 1,4-anthracenedione analogs induce cytochrome c release. caspase-9,-3, and-8 activities, poly (ADP-ribose) polymerase-1 cleavage and internucleosomal DNA fragmentation in HL-60 cells by a mechanism which involves caspase-2 activation but not Fas signaling. Biochem Pharmacol,2004,67(3):523-537.
    [134]Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol 2001,31(11):E255-263.
    [135]Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates ER-specific apoptosis and cytotoxicity by amyloid-β. Nature,2000,403(6765):98-103.
    [136]Lin, XY, Choi MS, Porter AG. Expression analysis of the human caspase-1 subfamily reveals specific regulation of the CASP5 gene by lipopolysaccharide and interferon-gamma J Biol Chem,2000,275:39920-39926.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700