用户名: 密码: 验证码:
断层泥特征及其工程地质意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
断层泥作为断层活动的产物,记载着断层活动的丰富信息。对断层泥的物质组成、结构特征及其反映的断层活动性、物理力学性质等许多方面的研究已经积累了大量成果。探索断层泥地球化学特征所反映的演化过程是地质学基础研究的前沿领域。
     选取青藏高原东北缘的3条断裂带的典型剖面,进行系统采样,开展XRD、XRF实验研究断层泥的矿物化学成分,应用MAT271质谱计测量断层泥吸附气体,首次应用大型同步辐射装置实验研究断层泥的锰和硫元素化学种。结合收集的研究资料,分析了断层泥物质组成特征,探讨了断层泥反映的形成环境和工程地质意义。主要研究成果如下:
     (1)矿物化学成分测试结果显示一般断层泥都含有石英、方解石和长石等造岩矿物,同时含有伊利石、高岭石、蒙脱石和白云母等粘土矿物。化学成分一般含有硅、钙、铁、硫、锰、镁和磷等元素,其中硅、铁和钙较为活泼。钙与镁、锰、硅,铝与钾、钛等具有较高的相关性。
     (2)对断层泥吸附气体的测试结果表明样品中气体含量CO2>N2>H2>CH4 (C2H6或C3H8)>C4H10,不含H2S,黑色断层泥中的吸附气体比黄色断层泥中的吸附气体含量多。发现断层泥吸附气体含量和断层活动历史有一定的相关性。
     (3)锰和硫元素化学种反映出红色和黄色断层泥一般含氧化性元素化学种,显示在氧化环境中形成,灰绿色和灰蓝色断层泥多含有还原性化学种,指示在还原环境中形成。
     (4)通过查阅大量的断层泥结构方面的资料,分析了断层泥的粒度特征和微观结构。尝试应用经典沉积物粒度分析法对断层泥的粒度特征进行了分析,建立了粒度参数和断层泥物理力学参数的关系。
As a product of fault, fault gouge may contain a wealth of information about the activity. A huge mass of data have been accumulated on the material compositions and structure characteristics of fault gouge, as well as on the fault activity reflected, physical and mechanical properties. Exploring geochemical characteristics of fault gouge which reflected evolution process is basic research in frontier field of geology.
     Typical sections of the three faults near the northeastern Tibet plateau have been selected to systematic sampling in field study. The samples would be tested with experiments with XRD, XRF, and measurement of gas adsorption with MAT271 mass spectrometer, first applied BSRF to study S and Mn chemical species. The characteristics of the compositions of fault gouge and its environment of formation and engineering geological significance have been analyzed and discussed based on the experimental results and previous studies and findings. The major results are as follows:
     (1) The mineral and chemical composite experimental results showed that quartz, calcite and feldspar, and other rock-forming minerals are contained in fault zone, besides, there is a certain amount of clay minerals, such as illite, kaolinite, montmorillonite, muscovite and so on. From the analysis of the chemical constituents, we see that the Si, Ca, Fe, S, Mg, Mn and P et al. are contained in fault gouge, the more active elements are Si, Fe and Ca. A study of the correlation of elements in the samples reveals that Ca and Mg, Mn, Si; Al and K, Ti have high correlation.
     (2) From the experimental results of a test for adsorbed gas in fault gouge, it showed that CO2>N2>H2>CH4 (C2H6 or C3H8)>C4H10, and there is a correlation between content of adsorbed gases and history of fault activity.
     (3) Analyses of an X-ray absorption fine structure experiment with manganese and sulfur shows that the red and yellow gouge are usually formed in an oxidizing environment for they generally contain Oxidative chemical species; the gray-green and blue-gray gouge are formed in a reducing environment for they contain more reducing species.
     (4) By consulting a large number of structural data in fault gouge, we have analyzed the characteristics of particle size and micro-structure of the fault gouge. In this paper, the researcher tries to apply classic sediment particle size methods to analyze the characteristics of the fault gouge, the correlation between the particle size parameters and physical & mechanical parameters of fault gouge has been established.
引文
[1]李兴唐.活断活动研究与工程评价[M].北京:地质出版社,1991.
    [2]谌文武.断层岩的工程性质与环境效应[D].兰州大学,2004.
    [3]付碧宏,王萍,孔屏,等.四川汶川5.12大地震同震滑动断层泥的发现及构造意义[J].岩石学报,2008,24(10):2237-2243.
    [4]兰州大学,成都理工大学,中国地质大学.断层岩工程地质性质与工程地质评价报告[R].1986.
    [5]黄伟师.从地质地貌标志看沂沭断裂的新构造活动特性[J].中国地震,1988,4(3):143-150.
    [6]张秉良.香山-天景山断裂断层泥显微构造特征及其地质意义[J].中国科学(D辑),2002,32(3): 184-190.
    [7]邵顺妹.断层泥研究的现状和进展[J].高原地震,1994,6(3):51-55.
    [8]Logan, D.A. Experimental studies of simulated gouge and their applieatlon to studies of natural fault zone[J]. Proc. Cenf. Ⅷ. Analysis of actual fault zone in Bedrock.1979,79:305-343.
    [9]Song, Y.F., Song, S.R., Tang, M. T. and Yin, G. C. Study of fault rocks by X-ray microscopy[J]. Proc. Cenf. Ⅷ. X-ray Microscopy IPAP.1979,7:328-330.
    [10]吕广廷,汤泉,赵广堃.断层泥在粘滑机制中的作用[J].国际地震动态,1983,(2):54-59.
    [11]罗丽,何昌荣.热水条件下斜长石和辉石断层泥的摩擦滑动研究[J].地质地震,2009,31(1):84-96.
    [12]谭文彬,何昌荣.高温高压及干燥条件下斜长石和辉石断层泥的摩擦滑动研究[J].地学前缘,2008,15(3):279-286.
    [13]张秉良,何昌荣.云南小湾断层矿物特征及其构造意义[J].地质科学,2000,35(2):197-205.
    [14]Zheng, GD., Lang, Y.H., Miyahara, M., Nozaki, T., Haruaki, T. Iron oxide precipitate in seepage of groundwater from a landslide slip zone [J]. Environmental Geology.2007,51(8): 1455-1464.
    [15]韩文峰.黄河黑三峡河段开发重大工程地质问题研究[M].北京:科学出版社,2006.
    [16]张骏.断层气体测量在大柳树坝址区断裂火动性研究中的应用[J].勘察科学技术,1996,(6):23-27.
    [17]梁收运,谌文武,韩文峰,等.断层泥吸附气体特征与断层活动性关系初步研究[J].兰州大学学报(自然科学版),2006,42(1):23-26.
    [18]张秉良.活断层中断层泥的显微构造特征及地质意义[J].科学通报,1993,38(14):1036-1038.
    [19]张秉良,李建国,方仲景,等.断层泥的再生显微结构特征及其地震地质意义[J].地震地质,1995,17(3):204-206.
    [20]申俊峰,申旭辉,曹忠全,等.断层泥石英微形貌特征在断层活动性研究中的意义[J].矿物岩石,2005,27(1):90-96.
    [21]王世元,王道永,王亚琼,等.金川水电站坝区主要断裂断层泥中石英碎砾表面SEM特征及断裂活动性[J].世界核科学技术,2007,24(2):279-286.
    [22]申俊峰,申旭辉,曹忠全,等.断层泥石英微地貌特征在断层泥活动性研究中的意义[J].矿物岩石,2007,27(1):90-96.
    [23]Kazuo, M., Hirose, T., Shimamoto, T., Fukuyama, E. Internal structure and permeability of the Nojima fault, southwest Japan[J]. Journal of Structural Geology,2008,30:513-524
    [24]杨主恩,胡碧茹,洪汉净.活断层中断层泥的石英碎砾的显微特征及其意义[J].科学通报,1984,(8):484-486.
    [25]Kanaori, Y. Dating fault activity by surface textures of quartz grain from fault gouge[J]. Eng. Geol,1980,16:243-262.
    [26]汪明武,罗国煜,李丽.润扬大桥桥基断裂断层泥石英碎砾微结构的SEM研究[J].电子显微学报,2002,21(5):796-797
    [27]徐叶邦.海原活动断裂中断层泥的特征、成因及其对断层滑动性能的影响[J].西北地震学报,1986,8(1):75-90.
    [28]吕德徽,向光中.毛毛山断裂带断层岩的特征及其意义[J].内陆地震,1994,8(2):159-165.
    [29]易顺民.活动断裂的分形结构特征[J].地球科学,1995,20(1):58-62.
    [30]俞维贤,张建国,周光全.2001年永胜6级地震的地表破裂与程海断裂[J].地震研究,2005,28(2):126-128.
    [31]耿乃光,姚孝新,陈顒.中国五条断裂断层泥力学性质的初步研究.中国地震[J].1985,1(4):60-65.
    [32]耿乃光,李纪汉,郝晋升,等.脆性岩石破裂的前兆变形和前兆应力降[J].地震,1986,1: 9-12.
    [33]刘彬,聂德新.断层泥强度参数与含水率关系研究[J].岩土工程学报,2006,28(12):2164-2167.
    [34]张文忠.乌鞘岭隧道F7断层主带物理力学参数的综合测试[J].科技交流,2006,(4):89-96.
    [35]Silvio, B., Giger, S., Cox, F. and Eric, T. Slip localization and fault weakening as a consequence of fault gouge strengthening-Insights from laboratory experiments[J]. Earth and Planetary Science Letters,2008,276:73-84.
    [36]Lin, J. and Charles, G S. Particle size distribution of cataclastic fault materials from southern California: A 3-D Study[J]. Pageopg,1994,143(1):203-228.
    [37]Arenson, L. U., Palmer, C. A. and Rock G Fault gouge and asphalt Hard particles in a nonlinear creeping matrix[J]. Cold Regions Science and Technology,2005,43:117-127
    [38]Wang, R., Liu, X. and Jin, F. Grain size distribution of gouge and fault actlvity[A]. ICCE, Beijin:Seismological press,1993,362-368.
    [39]邵顺妹,邹谨敞.西秦岭北缘断裂带和海原断裂带断层泥粒度分布和分形研究[J].内陆地震,2000,14(1):30-36.
    [40]Billi, A. Grain size distribution and thickness of breccia and gouge zones from thin(<1 m) strike-slip fault cores in limestone[J]. Journal of Structural Geology,2005,27:1823-1837.
    [41]马谨,Moore, D. Byerly, J.伊利石断层泥摩擦特性的温度效应与白云母化[J].中国地震,1985,1(1):41-47.
    [42]Moore, D. Sliding behavior and defomation textures of heated illite gouge[J]. Journal of Structural Geology,1989,3 (11):155-163.
    [43]Sammis. C.G and Ronald L.B. Fractals, fault-Gouge, and friction[J]. Pageoph,1989, 131(1/2):255-271.
    [44]胡道功吴树仁殷秀兰.仙女山断裂带断层泥分维值与断裂活动关系[J].地球学报,1999,20(2):137-141.
    [45]李细光,姚运生.三峡九湾溪断裂带断层泥的特征及分段研究[J].地学前缘,2003,10(4):365-371.
    [46]Matsumoto, H., Yamanaka, C. and Moto, J. I. ESR analysis of the Nojima fault gouge, Japan, from the DPRI500m borehole [J]. The Island Arc,2001,10:479-485.
    [47]计凤桔.断层物质测年的热释光研究[J].地震地质,1994,16(2):167-175
    [48]Horst, Z. and Neil, M. Timing of Alpine fault gouges[J]. Earth and Planetary Science Letters, 2004,223(3-4): 415-425.
    [49]Zwingmann, H., Offler, R., Wilson, T., Cox, S. F. K-Ar dating of fault gouge in the northern Sydney Basin, NSW, Australia—implications for the breakup of Gondwana[J]. Journal of Structural Geology,2004,2 (12):2285-2295.
    [50]Tatsuro, F. Direct ESR dating of fault gouge using clay minerals and the assessment of fault activity [J]. Developments in Geotechnical Engineering,1997,81:147-162
    [51]墨宏山.断层泥测年的年代意义及其在活动断层研究中的应用[J].工程地质学报,2002,(增刊):108-112.
    [52]谌文武,赵志福,刘高,等.兰州-海口高速公路甘肃段工程地质问题研究[M].兰州:兰州大学出版社,2007.
    [53]李传友,张培震,张剑玺.西秦岭北缘断裂带黄香沟段晚第四纪活动表现与滑动速率[J]. 第四纪研究,2007,27(1):55-63.
    [54]郑国东.基于穆斯堡尔谱技术的铁化学种及其在相关表生地球科学研究中的应用[J].矿物岩石地球化学通报,2008,27(2):161-168.
    [55]王华林,耿杰.沂沭断裂带及其附近断裂的断层泥分形特征及其地震地质意义[J].中国地震,1996,12(3):307-315.
    [56]邵顺妹,邹谨敞,滕瑞增,等.鸳鸯镇-凤凰山断裂的断层泥粒度分布与断层活动特征[J].地质力学学报,1996,2(4):36-42.
    [57]杨重存,刘高,赵志福,等.公路隧道信息化施工技术研究[M].兰州:兰州大学出版社,2005.
    [58]成都地质学陕北队.沉积岩(物)粒度分析及其应用[M].北京:地质出版社,1976.
    [59]张秉良,方仲景.断层泥显微结构的特征与断层滑动习性的研究[J].华南地震,1996,16(4):68-72.
    [60]钟增球,郭宝罗.构造岩与显微构造[M].武汉:中国地质大学出版社,1991.
    [61]俞维贤,王彬,毛燕.程海断裂带断层泥中石英碎砾表面SEM特征及断层活动状态的分析[J].中国地震,2004,20(4):347-352.
    [62]俞维贤,安晓文,李世成.澜沧江流域主要断裂断层泥中石英碎砾表面SEM特征及其断裂活动研究[J].地震研究,2002,25(3):275-280.
    [63]Kanaori, Y., Miyakoshi, K., Kakuta, T. and Stake, Y.从断层泥石英颗粒表面结构来判定断层的活动[J].湖南地质,2000,19(4):275-280.
    [64]张咸恭,王思敬,张倬元,等.中国工程地质学[M].北京:科学出版社,2000.
    [65]林传勇.断层泥在基岩区断层新活动研究中的意义[J].中国地震,1995,11(1):26-32.
    [66]Wise,D.U.对断层岩术语的建议[J].武汉地质学院《地质科技情报》,1985,4(3):79-83.
    [67]Sander, B., Gefugekunde der Gesteine[M]. Springer, Berlin,1980.
    [68]Sibson, R.H. Fault rocks and fault mechanisms[J]. J. Geol. Soc, London,1977,133:191-213.
    [69]王玉芳,郑亚东,王新利.中蒙边境地区特大型推覆构造带中的断层泥分析[J].北京大学学报(自然科学版),1995,31(1):115-127.
    [70]潘懋,李铁锋.灾害地质学[M].北京:北京大学出版社,2002.
    [71]张广良.青藏高原东北缘六盘山-马东山地区晚新生代构造变形综合研究[D].中国地震局地质研究所,2006.
    [72]Burcher-Nurminen, K. The formation of metasomatic reaction veins in dolomitic marble roof pendants in the Bergell intrusion[J]. Am. J. Sci.,1981,281:191-213.
    [73]汪成民,李宣瑚,魏柏林.断层气测量在地震科学中的应用[M].北京:地震出版社,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700