用户名: 密码: 验证码:
基于波导耦合光栅的光学滤波器件
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波导耦合光栅是由衬底层、波导层以及光栅层组成的复合结构。其基本物理机理是被光栅衍射进入波导传播的光,当其被光栅进一步衍射产生多束衍射光,它与直接透射光发生干涉相消作用,在透射光谱中形成窄带消光信号,即产生波导共振模式。将波导耦合光栅与金属材料结合可制备出波导耦合金属光子晶体。在波导耦合金属光子晶体中,满足一定条件的入射光可激发金属表面等离子共振现象并与波导模式发生强烈的耦合,使得样品显现出独特的光学响应特性。基于波导耦合金属光子晶体结构制作的光学元器件可广泛应用在光学滤波、生物传感等光电子技术领域。
     本文在引入金属表面等离子共振及波导耦合光栅光学滤波特性的基础上,介绍了利用激光干涉光刻法制备大面积、结构均匀的三元波导耦合光栅以及微米级大周期波导耦合光栅结构的方法。通过对其光学特性的研究发现:
     (1)大周期波导耦合光栅具有不同于周期为纳米级的波导耦合光栅的反常透射现象。其角分辨的消光光谱中除了具备在波导耦合纳米光栅光谱中观察到的窄带消光信号,还出现了随角度调谐的透射增强信号。
     (2)三元波导耦合光栅存在三套不同周期光栅结合而成的波导共振模式,随着入射角大小的连续变化,其信号响应范围可覆盖至整个可见光区域。三套波导共振信号模式同时调谐的光谱学响应特性有可能大大增加基于三元波导耦合光栅结构生物传感器测试的灵敏度。
     最后,我们介绍了利用干涉光刻技术结合溶液法制备波导耦合金属光子晶体的过程,并对其进行了光谱学响应特性研究。这些实验研究结果与理论解释,进一步开拓了将波导耦合器件应用于光学滤波、生物传感等技术的思路,对设计出高灵敏度、性能稳定、参数可调的光电子器件具有重要的参考价值。
Waveguided grating structures (WGS) are a kind of narrow-band optical filters, which are composed of a substrate, a waveguide layer, and grating structures. The light is firstly diffracted by the grating, which excites the propagation mode in the waveguide. Further diffraction of the waveguide propagation mode by the grating produces multiple beams that propagate parallel to that direct transmission beam through the WGS. Destructive interference between the diffracted beams and the directly transmitted beam give rise to a narrow-band optical response in the extinction spectrum. WGS can be used to construct waveguided metallic photonic crystals (WMPC), which show novel optical properties due to strong coupling between the waveguide resonance mode and the particle plasmon resonance. The optical devices based on WGS and WMPC can be widely used in biosensors, optical filters and optical switches.
     This thesis demonstrates the fabrication of waveguide ternary gratings and the WGS based on large-period grating structures. After systematic investigation on different kinds of WGS devices, we find that,
     (i) Some abnormal phenomena, such as enhanced transmission, can be observed when the grating period is much larger than the wavelength. Furthermore, the resonant mode can be tuned by changing the angle of incident light.
     (ii) Waveguide ternary gratings have three sets of narrow-band waveguide resonance modes, which can be tuned over the whole visible spectral range through changing the incident angle of the light. This has thus introduced multifold structures and multiple functions into an individual WGS device and may enhance the sensitivity of the corresponding optical response to the change of the environmental or structural parameters of the device due to the simultaneous operation of multiple mutually related optical signals.
     At last, we demonstrate the fabrication and optical properties of WMPC by interference lithography and solution-processible method. The experimental results in this thesis enhance the flexibility of the potential applications of the waveguide grating structures in filters, optical switch, and sensors.
引文
1 Yablonovitch E. Inhibited Spontaneous Emission in Solid-state Physics and Electronics. Phys. Rev. Lett. 1987, 58(20):2059~2062.
    2 S. John. Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Phys. Rev. Lett. 1987, 58(20):2486~2489.
    3 E. Yablonovitch. Photonic Crystals: Semiconductors of Light. Scientific American. 2001, 285(12):35~43.
    4 J. D. Joannopoulos, P. R. Villeneuve, and S. Fan. Photonic Crystals: Putting a New Twist on Light. Nature 1997, 386(3):143~149.
    5 J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade. Photonic Crystals: Molding the Flow of Light. Second Edition. Princeton University Press. 2008.
    6 H. C. Guo, D. Nau, A. Radke, X. P. Zhang, J. Stodolka, X. L. Yang, S. G. Tikhodeev, N. A. Gippius, and H. Giessen. Large-area Metallic Photonic Crystal Fabrication with Interference Lithography and Dry Etching. Appl. Phys. B 2005, 81(2-3):217~275.
    7 S. Linden, A. Christ, J. Kuhl, and H. Giessen. Selective Suppression of Extinction within the Surface Plasmon Resonance of Gold Nanoparticles. Appl. phys. B 2001, 73(4):311~316.
    8 S. Linden, J. Kuhl, and H. Giessen. Controlling the Interaction between Light and Gold Nanoparticles: Selective Suppression of Extinction. Phys. Rev. lett. 2001, 86(20):4688~4691.
    9 R. Gordon, B. Leathem, P. D. Popescu, K. L. Kavanagh, and A. G. Brolo. Comparing the Transmission through Ellipse and Double-hole Nano-photonic Arrays in Gold Films. Nanotechnology. 2004. 4th IEEE Conference on.
    10 A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi. Enhanced Nonlinear Optical Conversion from a Periodically Nanostructured Metal Film. Opt. Lett. 2003, 28(6):423~425.
    11 Y. D. Liu and S. Blair. Fluorescence Enhancement from an Array of Subwavelength Metal Apertures. Opt. Lett. 2003, 28(7), 507~509.
    12 A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen. Waveguide-plasmon Polaritons: Strong Coupling of Photonic and ElectronicResonances in a Metallic Photonic Crystal Slab. Phys. Rev. Lett. 2003, 91(18):183901-1~18901-4.
    13 C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry. All-angle Negative Refraction without Negative Effective Index. Phys. Rev. B. 2002, 65(20):201104-1~201104-4.
    14 V. G. Veselago. The Electrodynamics of Substances with Simultaneously Negative Values of Permittivity and Permeability. Sov Phys Usp. 1968, 10(4): 509~514.
    15 P. V. Parimi, W. T. Lu, P. Vodo, J. S. Derov, and S. Sridhar. Negative Refraction and Left-handed Eletromagnetism in Microwave Photonic Crystals. Phys. Rev. Lett. 2004, 92(12):127401-1~127401-4.
    16 C. Y. Luo, S. G. Johnson, and J. D. Joannopoulos. All-angle Negative Refraction in a Three-dimensionally Periodic Photonic Crystal. Appl. Phys. Lett. 2002, 81(13): 2352~2354.
    17 M. Notomi. Theory of Light Propagation in Strongly Modulated Photonic Crystals: Refraction Behavior in the Vicinity of the Photonic Band Gap. Phys. Rev. B. 2000, 62(4):10696-1~10696-6.
    18 M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry. Toward photonic-crystal metamaterials: Creating Magnetic Emitters in Photonic Crystals. Appl. Phys. Lett. 2003, 82(7):1069~1071.
    19 Y. J. Lu and Z. Y. Ou. Observation of Nonclassical Photon Statistics in Two-Photon Interference. Phys. Rev. Lett. 2002, 88(2):023601-1~023601-4.
    20 C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter. High-efficiency Entangled Photon Pair Collection in Type-II Parametric Fluorescence. Phys. Rev. A 2001, 64(2):023802-1~023802-4.
    21 D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio. Fundamental Role of Metal Surface in Enhanced Transmission through Subwavelength Apertures. Appl. Phys. Lett. 2000, 77(16):1569~1571.
    22 L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen. Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays. Phys. Rev. Lett. 2001, 86(6):1114~1117.
    23 E. Altewischer, M. P. Van Exter, and J. P. Woerdman. Plasmon-assisted Transmission of Entangled Photons. Nature 2002, 418(7):304~306.
    24 G. Nemova and R. Kashyap. A Compact Integrated Planar-waveguide Refractive-index Sensor Based on a Corrugated Metal Grating. J. Lightw. Technol. 2007, 25(8):2244~2250.
    25 G. Raschke, S. Kowarik, T. Franzl, C. S?nnichsen, T. A. Klar, J. Feldmann, A. Nichtl and K. Kürzinger. Biomolecular Recognition Based on Single Gold Nanoparticle Light Scattering. Nano Letters. 2003, 3(7):935~938.
    26 X. P. Zhang, H. M. Liu, J. R. Tian, Y. R. Song, L. Wang, J. Y. Song, and G. Z. Zhang. Optical Polarizers Based on Gold Nanowires Fabricated using Colloidal Gold Nanoparticles. Nanotechnology. 2008, 19(28):285202-1~285202-6.
    27 X. P. Zhang, H. M. Liu, J. R. Tian, Y. R. Song, and L. Wang. Band-selective Optical Polarizer Based on Gold-nanowire Plasmonic Diffraction Gratings. Nano Letters. 2008, 8(9):2653~2658.
    28 S. Y. Hsu, M. C. Lee, K. L. Lee, and P. K. Wei. Extraction Enhancement in Organic Light Emitting Devices by using Metallic Nanowire Arrays. 2008, 92(1): 013303-1~013303-3.
    29 H. Hirayama, T. Hamano, and Y. Aoyagi. Novel Surface Emitting Laser Diode using Photonic Band-gap Crystal Cavity. Appl. Phys. Lett. 1996, 69(6):791~793.
    30 M. J. Bloemer and M. Scalora. Transmissive Properties of Ag/MgF2 Photonic Band Gaps. Appl. Phys. Lett. 1998, 72(14):1676~1678.
    31 F. Eftekhari, R. Gordon, J. Ferreira, A. G. Brolo, and D. Sinton. Polarization-dependent sensing of a self-assembled monolayer using biaxial nanohole arrays. Appl. Phys. Lett. 2008, 92:253103
    32 Kristofer Tvingstedt, Nils-Krister Persson, Olle Inganas, Aliaksandr Rahachou and Igor V. Zozoulenko. Surface plasmon increase absorption in polymer photovoltaic cells. Appl. Phys. Lett. 2007, 92:113514
    33 G. A. Turnbull, P. Andrew, W. L. Barnes and I. D. W. Samuel. Operating characteristics of a semiconducting polymer laser pumped by a microchip laser. Appl. Phys. Lett. 2003,82:313-315
    34 I. D. W. Samuel and G. A. Turnbull. Organic semiconductor lasers. Chem. Rev. 2007, 107:1272-1295
    35 E. B. Namdas, J. S. Swensen, P. Ledochowitsch, J. D. Yuen, D. Moses, A. J. Heeger. Gate-controlled light emitting diodes. Adv. Mater. 2008, 20:1-4
    36 X. Zhang, Z. W. Liu. Superlenses to overcome the diffraction limit. NatureMaterials. 2008, 7:435-441
    37 N. I. Zheludev. What diffraction limit. Nature Materials. 2008, 7:420-422
    38 W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, F. R. Aussenegg. Opt. Commun. 2003, 220:137
    39 J. Grand, P. M. Adam, A. S. Grimault, A. Vial, M. L. chapelle, J. L. Bijeon, S. Konstcheev, and P. Royer. Plasmonics. 2006, 1:135
    40 K. Yamazaki and H. Namatsu. 5-nm-order electron-beam lithography for nanodevice fabrication. Jpn. J. Appl. Phys. 2004, 43:3767
    41 M. J. Word, I. Adesida and P. R. J. Berg. Nanometer-period gratings in hydrogen silsesquioxane fabricated by electron beam lithography. Vac. Sci. Technol. 2003, 21: L12-L15
    42 M. Isaacson and A. J. Murray. Insitu vaporization of very low-molecular weight resists using 1-2 nm diameter electron-beams. Vac. Sci. Technol. 1981, 19,1117
    43 W. Hinsberg, F. Houle, M. Sanchez, J. Hoffnagle, G. Wallraff, D. Medeiros, G. Gallatin and J. Cobbc. Extendibility of chemically amplified resists : Another brick wall? Proc. SPIE. 2003, 1,5039
    44 H. C. Guo, D. Nau, A. Radke, X. P. Zhang, J. Stodolka, X. L. Yang, S. G. Tikhodeev, N. A. Gippius, and H. Giessen. Large-area metallic photonic crystal fabrication with interference lithography and dry etching. Appl. Phys. B 2005, 81:271-275
    45 X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, d. Nau, and H. Giessen. Metallic photonic crystals based on solution-processible gold nanoparticles. Nano Lett. 2006, 6, 651
    46 X. P. Zhang, B. Q. Sun, R. H. Friend, H. C. Guo, N. Tetreault, H. Giessen and R. H. Friend. Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles. Appl. Phys. Letts. 2007, 90, 133114
    47 G. Binnig, C. F. Quate, C. Gerber. Atomic Force Microscope. Phys. Rev. Lett. 1986, 56, 930
    48张斗国.微纳金属复合结构的光学特性及其应用基础研究.中国科学技术大学博士学位论文. 2007.05
    49顾本源.新兴的表面等离子体光子学.物理教学. 2008,30:1-6
    50魏红,徐红星.表面等离子体光子学研究的新进展. 2008,54,2263
    51 A. Sharon, D. Rosenblatt, and A. A. Friesem, Resonant Grating-waveguide Structures for Visible and Near-infrared Radiation, J. Opt. Soc. Am. A 1997, 14(11): 2985~2993.
    52 D. Rosenblatt, A. Sharon, A. A. Friesem. Resonant Grating Waveguide Structures. IEEE Journal of Quantum Electronics. 1997,33,2038
    53 S. F. Feng, X. P. Zhang, J. Y. Song, H. M. Liu, and Y. R. Song. Theoretical analysis on the tuning dynamics of the waveguide–grating structures. Optics Express. 2009, 17, 426
    54 J. Y. Song, S. F. Feng, X. P. Zhang, H. M. Liu, and Y. R. Song. Optical filtering and angle-resolved tuning properties of the waveguided grating structures. Acta Physica Sinica. 2009, 58:6542-6548
    55 M. J. Hosteetler, J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wgnall, G. L. Glish, M. D. Porter, N. D. Evans, and R. W. Murray. Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: Core and monolayer properties as a function of core size. 1998, 14, 17
    56 Y. N. Li, Y. L. Wu, and B. S. Ong. Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics. J. Am. Chem. Soc. 2005, 127, 3266-3267
    57赵江山,张志刚,柴路,等.基于半导体光二极管的实时自相关仪.光子学报,2002,31(12):1467-1469
    58逯美红,王志军,赵玉连.简易自相关仪对飞秒激光脉冲宽度的测量.大学物理,2008,27:37-42
    59李旭,朱振和.测量飞秒光参量产生器输出光脉冲脉宽的自相关仪的设计.中央民族大学学报(自然科学版),2006,15:339-345
    60 Z. L. Gong, Z. Y. Huang, Z. G. Xu. Measurement of Femtosecond Pulsewidths Using Interference Autocorrelation. Appl. Phys. B. 1983, B31(4): 201-207
    61 F. Salin, P. Georges, G. Roger. Single-Shot Measurement of 52-fs Pulse. Appl. Opt. 1987, 26(21): 4528-4531

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700