用户名: 密码: 验证码:
离心泵水力模型多目标优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对目前离心泵多目标优化问题,本文提出了泵的损失、汽蚀性能和稳定性三目标函数与超传递近似法相结合的多目标优化方法。其主要内容是考虑此三性能函数在泵的使用中重要程度的不同,通过超传递近似法对分目标函数予以评价,得到各目标函数的权值,从而得到离心泵几何参数的相对最优解。本文从数学模型的建立、程序优化、三维水力模型建立及网格划分和流场解析对比方面进行了研究。
     首先,根据各目标函数重要程度的不同,结合超传递近似法给出了各自的权值,通过线性加权的方法统一了目标函数,确定了合适的约束范围,从而建立了完整的数学模型。利用FORTRAN语言通过直接寻优的复合形法对数学模型进行了计算,最终得到了约束范围内的最佳变量组合。
     其次,利用三维制图软件pro/e对离心泵优化前后的叶轮和蜗壳分别进行了三维实体造型;利用CFD前处理软件GAMBIT对其进行了网格划分,并确定了模型的边界和流体的性质;利用FLUENT软件对整个流场进行仿真计算,湍流模型采用标准k-ε模型,压力速度耦合方式采用SIMPLE方法,得到了离心泵内部全流场数值解析数据。
     最后,应用后处理手段,得到了优化前后流场的速度矢量图、压力分布云图等,通过对流场情况的对比分析,我们发现优化后靠近叶轮流道入口处叶片背面的负压值明显小于优化前,且流道内部的轴线涡流基本消除,从而证明了优化方法的正确性及优化效果。
In allusion to the multi-objective optimization of the centrifugal pump at present, a new multi-objective optimization method that combines the objectives that include the energy loss, the NPSH_r and the stability of the pump with the super-transitive approximate method is first proposed. The main contents are that the super-transitive approximate method is used to evaluate the important degree of the target functions and confirm the weight of the target functions and consequently the optimal parameters are obtained according to the important degree of the target functions, thus the paper will carry out the research in such aspects as up-building the mathematical model, writing optimization program, up-building three dimensional model, creating grid and numerical simulation of the flow field.
     First of all, according to important degree of the target functions, the weight of the target functions is confirmed. The target functions are unified by the linear weighted method and the right constraint conditions are confirmed. Then the full mathematical model is set up. The composite form method of the direct searching optimization is used to calculate the mathematical model by the FORTRAN language and finally the optimal parameters in the right constraint conditions are obtained.
     Secondly, the three dimensional entities of the impeller and volute chamber both before optimization and behind are plotted in the pro/engineer wildfire2.0.The grid of the flow field is created and the right boundary types and continuum types are presented in the GAMBIT. The flow field is simulated in the FLUENT and the standard k-εturbulence model and SIMPLE method were applied. The numerical results were obtained.
     Finally, the velocity vector and pressure fields both before optimization and behind were obtained.It was founded that the pressure value in the facing of a quilt of the vanes anear the entrance of the flow path behind optimization was less than before. The axial whirlpool was eliminated almost.Thus,the validity and the effect of the new multi-objective optimization method are proved.
引文
[1]戴高男主编.通用机械设备.北京:电子工业出版社,2002:49-51.
    [2]化学工业部人事教育司,化学工业部教育培训中心组织编写.化工用泵.北京:化学工业出版社,1997:102-109.
    [3]张振山,王伟.离心泵叶轮CAD水力模型库的研究.中国农村水利水电.2006,(7):30-40.
    [4]魏源迁.叶片型线光顺德B样条法.应用科学学报.1995,13(1):109-114.
    [5]严升明编著.机械优化设计.徐州:中国矿业大学出版社,2003:3-5.
    [6]方世杰,綦耀光主编.机械优化设计.北京:机械工业出版社,2003:130-134.
    [7]于雷,李蔚生.水泵叶轮模型的改进与发展.通用机械.2006,(8):54-56.
    [8]王玉昆,张振山.离心泵叶轮CAD系统轴面绘型的研究.机电产品开发与创新.2006,19(2):103-105.
    [9]郭晓梅,杨敏官,施高萍,王骥.基于Pro/E Wildfire的水泵叶轮精确建模.农机化研究.2006,(8):84-86.
    [10]徐伟幸,袁寿其.低比速离心泵叶轮优化设计进展.流体机械.2006,34(2):39-42.
    [11]袁寿其.低比速离心泵理论与设计[M].北京:机械工业出版社,1997:182-187.
    [12]陈洪海,袁寿其.低比速离心泵优化设计方法[J].流体机械.2001,29(8):19-22.
    [13]陈池,袁寿其,金树德.低比速离心泵研究现状与展望[J].流体机械.1998,26(7):29-34.
    [14]孙建平,张克危,贾宗谟.泵优化水力设计的现状及展望[J].水泵技术.1994,(5):12-15.
    [15]#12
    [16]李海东.计算流体力学正在蓬勃发展中.科技导报.1997,(12):30-31.
    [17]Wu C.H.A Generel Theory of Three-Dimensional Flow in Subsonic and Supersonic Turbomachiaes of Axial,Radial and Mixed Flow Types.NACA TN2604(1952).
    [18]Adler,D.Status of Centrifugal Impeller Internal Aerodynamics,Part1:Inviscid Flow Prediction Method.Trans.ASME.J.of Engng.for Power,Vol.102(1980),pp725-746.
    [19]何有世,袁寿其,陈池.CFD进展及其在离心泵叶轮内流计算中的应用.水泵技 术.2002,(3):23-26,19.
    [20]潘小强,袁碌.CFD软件在工程流体数值模拟中的应用.南京工程学院学报(自然科学版).2004,2(1):62-66.
    [21]林斌良,许协庆.水轮机转轮中的三维粘性和紊流计算.水利学报[J].1989,(8):45-49.
    [22]Patankar S.V.and Spalding D.B.A Calculation Procedure for Heat,Mass and Momentum Transfer in Three Dimensional Parabolic Flows.int.j.Heat and Mass Transfer,Vol.15(1972),pp.1787-1806.
    [23]王幼民,唐铃凤.中低比转速离心泵叶轮多目标优化设计.机械传动.2003,27(2):27-29.
    [24]陈乃祥,吴玉林编著.离心泵[M].北京:机械工业出版社,2003:32-36,54-55.
    [25]关醒凡.现代泵技术手册[M].北京:宇航出版社,1995:27-33.
    [26]徐光辉.运筹学基础手册[M].科学出版社,1999:161-165.
    [27]郑赞韬,蔡国飙,尹贵增.液体火箭发动机离心泵叶轮的多目标优化设计.火箭推进.2006,32(1):14-18.
    [28]徐玖平,李军编著.多目标决策的理论与方法.北京:清华大学出版社,2005.
    [29]全扬程泵3号模型数值计算报告.中国泵技术论坛http://bbs.pumptech.cn.
    [30]Fluent Inc.,GAMBIT Modeling Guide.Fluent Inc.,2003.
    [31]周雪漪.计算水力学.北京:清华大学出版社,1995:1-3.
    [32]陶文铨.数值传热学.第二版.西安:西安交通大学出版社,2001:6-27.
    [33]郭鸿志.传输过程数值模拟.北京:冶金工业出版社.1998:1-10.
    [34]王福军.计算流体动力学分析--CFD软件原理与应用.北京:清华大学出版社,2004:121-123.
    [35]郭乃龙.螺旋离心泵内部三维不可压湍流流动及应用.江苏理工大学硕士学位论文.1997:22-25.
    [36]张凌飞.离心泵内部流场三维数值模拟.中国农业大学硕士学位论文.2007:31-35.
    [37]H.K.Versteeg,W.Malalasekera,An Introduction to Computational Fluid Dynamics:The Finite Volume Method.Wiley,New York,1995.
    [38]B.E.Launder,D.B.Spalding,Lectures in Mathematical Models of Turbulence.Academic Press,London,1972.
    [39]Fluent Inc.,FLUENT User's Guide.Fluent Inc.,2003.
    [40]王瑞金,张凯,王刚.Fluent技术基础与应用实例[M].北京:清华大学出版社,2007:195-233.
    [41]韩占忠,王敬,兰小平.流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004:83-135.
    [42]严敬.低比转速离心泵-原理、参数优化及绘形[M].成都:四川科学技术出版社,1998:53-110.
    [43]易林,侯树强,王灿星.离心式叶轮内部流动数值模拟方法的研究综述.风机技术.2006,(2):45-50.
    [44]曹国强,梁冰,包明宇.基于FLUENT的叶轮机械三维紊流流场数值模拟.机械设计与制造.2005,(8):22-24.
    [45]唐辉,何枫.离心泵内流场的数值模拟.水泵技术.2002,(3):3-8,14.
    [46]张兴泉.离心式叶片泵内三维流场的数值模拟.通用机械.2006,(2):64-65.
    [47]潘小强,袁碌.CFD软件在工程流体数值模拟中的应用.南京工程学院学报(自然科学版).2004,2(1):62-66.
    [48]卢池,陈次昌,杨昌明,徐来福.低比转速离心泵内部流场的数值模拟.排灌机械.2005,23(6):6-9.
    [49]朱荣升,付强,李维斌.基于CFD技术改善低比速离心泵叶轮性能.中国农村水利水电.2006,(4):67-70.
    [50]滕书格,陈颂英,曲延鹏,王小鹏.低比转速离心泵叶轮几何参数多目标优化.中国工程热物理学会编.中国工程热物理学会流体机械学术会议论文集,绍兴,2007.2007:196-201.
    [51]杨平.离心泵叶轮的优化设计.青岛大学学报.2001,16(1):59-61.
    [52]A.Goto,M.Zangeneh.Hydrodynamic Design of Pump Diffuser Using Inverse Design Method and CFD.ASME Journal of Fluid Engineering.2002,124(2):319-328.
    [53]A.Goto,N.Motohiko,S.Takaki,S.Yoshiyasu.Hydrodynamic Design System for Pumps Based on 3-D CAD,CFD,and Inverse Design Method.ASME Journal of Fluid Engineering.2002,124(2):329-335.
    [54]Yos S.Morsi,PhD.Wei Yang,MEng Peter J.Witt,PhD.Amal M.Ahmed,MEng Mitsuo Umezu, PhD .Numerical analysis of the flow characteristics of rotary blood pump. J Artif Organs (2001) 4:54-60.
    
    [55] F.C. Visser, R.J.H. Dijkers, J.G.H. op de Woerd .Numerical flow-field analysis and design optimization of a high-energy first-stage centrifugal pump impeller. Comput Visual Sci 3: 103-108 (2000).
    
    [56] V.I. Klimovieh. On the optimal design of the form of hydroturbine impeller Blades. Structural Optimization 13, 29-35(1997).
    
    [57] Jin Yan and D.G.Smith.CFD Simulation of 3-Dinentional Flow in Turbomachine-ry Applications,FLUENT Technical Notes,Presented at Turbomachinery Flow Prediction Ⅷ,ERCOFTAC Workshop,March 2000.
    
    [58] G.K.Batcheior.An Introduction to Fluid Dynamics,Camoridge Univ.Press, Cambridge, England. 1967.
    
    [59] Versteeg H K,Malaasekera W.An Introduction to Computational Fluid Dynamics:The Finite Volume Method.Wiley,New York, 1995.
    
    [60] P.Cooper,E.Graf and T.Luce.Computational Fluid Dynamical Analysis of Complex Internal Flows in Centrifugal Pumps,Proceeding of the 11~(th) International Pump Users Symposium. 1994:83- 94.
    
    [61] Felix A.CFD calculation of a mixed flow pump characteristic from shutoff to maximum flow.Journal of Fluids Engineering,2002,3(124):798-802.
    
    [62] Shyy W,Tong S S,Correa S M.Numerical recirculating flow calculation using a body-fitted coordinates system.Heat Transfer, 1985(8):99-113.
    
    [63] Van Doormaal J P,Raithby G D.Enhancement of the SIMPLE method for predicting incompressible fluid flows/Numerical Heat Transfer, 1984,7(2): 147-163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700