用户名: 密码: 验证码:
黑附球菌XF_1菌株对马铃薯晚疫病的生防作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑附球菌(Epicoccum nigrum)XF1菌株是由本课题组筛选出的一株对致病疫霉(Phytophthora infestans)有较强拮抗作用的生防真菌,本论文旨在研究其对P. infestans的抑制作用方式和对马铃薯晚疫病的防治效果,并初步探索固体发酵条件,为其将来应用于马铃薯晚疫病的生物防治奠定基础。主要内容如下:
     采用玻片对峙法研究了XF1菌丝与P. infestans菌丝的相互作用,显微观察显示,对峙区域内P. infestans菌丝内原生质发生割裂、凝集,并出现畸形菌丝,而XF1菌丝无明显变化。运用纤维素膜法,证明了E. nigrum分生孢子萌发生长48 h后所产生的通过纤维素膜(截留分子量8000-14000)渗透并积累到黑麦培养基中的胞外分泌物,对P. infestans孢子囊直接萌发的抑制率达到90%以上,对其休止孢萌发抑制率则达100%。通过麦粒固体发酵所得到的XF1无菌发酵滤液对P. infestans游动孢子的释放具有较强的抑制作用,释放率仅为0.36%;对其休止胞萌发和休止胞芽管的延伸抑制率分别为50%和75%。以上结果都说明,XF1生长过程中能分泌一些强烈抑制P. infestans的物质,即其抑制作用方式主要表现为拮抗。
     离体叶片试验结果表明,室内条件下浓度为1.0×107个/mL和1.0×108个/mL的XF1分生孢子悬浮液对马铃薯晚疫病的预防作用,与0.2%可杀得无显著性差异。温室条件下,将XF1分生孢子水悬浮液(浓度为1.0×107个/mL)在不同时间喷施于马铃薯植株的叶片上,到达处理时间后,剪下叶片带回室内接种P. infestans。结果显示,接种前1 h喷施XF1对马铃薯晚疫病的防效最高,达到88.89%;接种前12 h、24 h、48 h和96 h喷施的防效逐渐降低,但均在65%以上;接种P. infestans前检查发现,不同时间喷施于马铃薯叶片上的XF1分生孢子几乎未萌发,萌发率均低于1%,然而接种P. infestans后保湿4 d再次检查XF1分生孢子的萌发情况表明,接种前1 h喷施的XF1分生孢子萌发率最高,为45.27%,显著高于接种前48 h(萌发率为23.56%)和96 h(萌发率为19.26%)喷施的处理。此外,XF1分生孢子灭活后(121℃,20 min)即失去对马铃薯晚疫病的防治效果。因此说明,只有活的XF1分生孢子才对马铃薯晚疫病具有防治作用,而且其喷施于马铃薯植株后的存活状况(萌发能力)是其对晚疫病防治效果的决定因素。室内试验结果显示,XF1分生孢子经紫外灯照射24 h后的萌发率显著降低,由此表明,XF1分生孢子喷施于马铃薯植株后,影响其存活能力和对晚疫病防治效果的重要因素之一可能为紫外线。
     以黑麦和小麦粒为固体基质,进行了XF1的固体发酵,结果表明,在培养40 d时,以黑麦为发酵基质的产孢量较高,然而两种基质所得到的分生孢子活力均较高,萌发率均在90%以上。
     在本研究的基础上,对XF1应用于马铃薯晚疫病生物防治的前景和存在问题进行了讨论。
Epicoccum nigrum, strain XF1 was collected as a potential biological control agent for the late blight of potatoes caused by Phytophthora infestans. This study focused on the inhibition and control effect of XF1 against P. infestans in vitro and in vivo, and preliminarily tested the solid-state fermentation conditions of XF1 as well.
     The interaction between XF1 and P. infestans mycelia were studied by means of the dual culture on slides. Results showed that the mycelia growth of P. infestans was inhibited by XF1 evidently, microscopic vision indicated the hyphae of P. infestans became stunted and distorted adjacent to the boundary of XF1 colony, and the protoplasm of P. infestans mycelia was degenerated in the inhibition zone. However, the hyphae of XF1 had no significant difference compared with normal ones. After 48 h incubation of conidia of XF1 on the membrane (molecular weight cut off 8000-14000) with RA (Rye agar) underneath, the extra cellular substances secreted by XF1 and penetrated into the RA through the membrane can significantly inhibit the direct germination of sporangia and cystspores of P. infestans, with inhibitory rate of 90% and 100%, respectively. Releasing of zoospores from sporangia of P. infestans was inhibited intensively by the conidia free filtrates of solid fermentation products of XF1 with wheat grains, the release rate was only 0.36%, so did on cystospore germination and germ tube elongation, with inhibitory ratio was 50% and 75%, respectively. Those results showed that the substances that intensely inhibited P. infestans can be produced by XF1 during growth, the action mode for inhibition, in other words, mainly relyed on antagonism.
     Results of detached leaves test showed that conidia suspension of XF1 with concentration of 1.0×107 conidia/mL and 1.0×108 conidia/mL could provide the same control effect on potato late blight with 0.2% Kocide DF under indoor conditions. The surface of selected leaves of potato cultivar in greenhouse were sprayed with conidia suspension of XF1 at different time and then detached and brought into lab inoculated with P. infestans. And it was showed that control effect decreased one by one of 1, 12, 24, 48 and 96 hours sprayed before inoculation. The conidia of XF1 did not germinate before inoculation, with germination ratio were less than 1%. However, after inoculation and incubated under wetness for 4 hours, germination of conidia of XF1 were promoted, the highest germination rate, showed by the treatment of 1 hour spray before inoculation, was 45.27%, which significantly higher than the treatments of 48 and 96 hours spray before inoculation (with germination rate were 23.56% and 19.26, respectively). In addition, conidia of XF1 loosed control effect against potato late blight after sterilize (121℃, 20 min). Therefore, it was indicated that only viable conidia of XF1 can have control effect against potato late blight, and the survival status (germination ability) play the critical role on its control effect against potato late blight. Lab test showed that the germination rate of conidia of XF1 would significantly decrease after irradiated by ultraviolet light (UV) for 24 h, which suggests that after spraying of conidia of XF1 on potato plants, UV may be one of the important factors on their viability and control effect on potato late blight.
     Production of conidia of XF1 was tested in solid-state fermentation with rye and wheat grains. It was showed that the highest conidia production obtained after 40 days fermentation with rye. While the conidia of XF1 have high viability from both of the two grains, germination ratio were higher than 90%.
     Based on this study, the prospects and problems of applying the XF1 into biocontrol of potato late blight on field were discussed.
引文
[1]何亚文,李耿光,张兰英.生物技术在马铃薯抗病育种中的应用进展[J].热带亚热带植物学报, 1995, 4(1): 77-82.
    [2]毛秋霞,黄永芳.几种葡萄糖氧化酶部分性质的比较[J].华南农业大学学报, 2000, 2(21): 54-56.
    [3] http://faostat.fao.org/site/339/default.aspx, 2007.
    [4]马莺.马铃薯加工业的现状及发展前景[J].中国马铃薯, 2001, 15(2).
    [5] Duncan J. Phytophthora-an abiding threat to our crops[J]. Microbiology today, 1999, 26: 114-117.
    [6] Austin Bourke P M. Emergence of Potato Blight,1843-46[J]. Nature, 1964, 203( 4947): 805-808
    [7] Agrios G N. Plant pathology[M]. Elsevier Academic Press, 2005.
    [8]宗兆锋,康振生.植物病理学原理[M].北京:中国农业出版社, 2002.
    [9]黄河.同宗配合的马铃薯晚疫病菌曾在中国被发现[J].植物病理学报, 2002, 32(4): 347-350.
    [10] Niederhauser J, Servantes J. Maintenance of field resistance to Phytophtora infestans in potato select -ions[J]. Phytopathology, 1956, 46: 22.
    [11] Hohl H, Iselin K. Strains of Phytophthora infestans from Switzerland with A2 mating type behaviour[J]. Transactions of the British Mycological Society, 1984, 83(3): 529-530.
    [12]田世民,张志铭,李济宸,等.河北省马铃薯真菌性病害种类及4种新记录[J].河北农业大学学报, 1995, 18(3): 59-62.
    [13]朱杰华,张志铭,李玉琴.马铃薯晚疫病菌(Phytophthora infestans)A2交配型的分布[J].植物病理学报, 2000, 30(4).
    [14]朱杰华.中国马铃薯晚疫病菌群体遗传结构研究[D].保定:河北农业大学, 2004.
    [15]郭军.马铃薯晚疫病菌遗传多样性及其小种特异无毒基因遗传定位和转录表达谱研究[D].北京:中国农业科学院, 2005.
    [16]杨艳丽,胡先奇,鲁绍凤,等.云南省马铃薯晚疫病菌生理小种的组成与分布[J].华中农业大学学报, 2007, 26(3): 297-301.
    [17]叶广继,孙海宏,周云,等.青海海东地区马铃薯晚疫病菌生理小种的组成及分布[J].植物病理学报, 2008, 38(5): 533-536.
    [18]董金皋.农业植物病理学[M].北京;中国农业出版社. 2001.
    [19]姚玉璧,张存杰,万信,等.黄土高原马铃薯晚疫病发生发展与气象条件关系的研究—以甘肃定西市为例[J].植物保护, 2008, 34(4): 90-92.
    [20]赵振忠,孙馨.马铃薯晚疫病的研究现状及控制策略的思考[J].中国植保导刊, 2009, 29(8): 12-14.
    [21]丁海滨,卢扬,邓禄军.马铃薯晚疫病发病机理及防治措施[J].贵州农业科学, 2006, 34(5): 76-81.
    [22]张志铭.马铃薯晚疫病的研究进展与绘合防治[J].植保技术与推广, 2002, 22(5): 38-39.
    [23]王密恰.抗病基因在野生马铃薯种中的多态性和进化[D].北京:中国农业科学院, 2007.
    [24]李汝刚,伍宁丰,范云六,等.马铃薯抗晚疫病研究进展[J].中国马铃薯, 1997, 11(4): 243-250.
    [25]孙海宏,叶广继,芳王,等.引自国际马铃薯中心的品种资源在青海对晚疫病的田间抗性鉴定[J].西北农业学报, 2010, 19(1): 68-70.
    [26] M ller K, Reents H. Impact of agronomic strategies (seed tuber pre-sprouting, cultivar choice) to control late blight (Phytophthora infestans) on tuber growth and yield in organic potato (Solanum tuberosum L.) crops[J]. Potato Research, 2007, 50(1): 15-29.
    [27]杨琼芬,李先平,卢丽丽,等.引进马铃薯品种在云南的适应性评价[J].西南农业学报, 2009, 22(6): 1550-1556.
    [28]王凤,刘峰,王洋,等.吉林省中西部地区马铃薯品种引种比较试验[J].中国马铃薯, 2009, 23(4): 221-223.
    [29]权守菊.马铃薯专用型品种大西洋施肥试验[J].现代农业科技, 2009, (1): 25.
    [30]王刚,周娜娜.不同种植密度下氮肥对马铃薯产量构成的影响[J].琼州学院学报, 2009, 16(5): 55-57.
    [31]杨相昆,田海燕,魏建军,等.不同播种方式及种植密度对马铃薯种薯生产的影响[J].西南农业学报, 2009, 22(4): 910-912.
    [32]王亚宏,高世铭,张伟,等.陇中旱地马铃薯不同种植模式对土壤温度和水分利用效率的影响[J].甘肃农业大学学报, 2009, 44(6): 19-23.
    [33] Nyankanga R, Wien H, Olanya O. Effects of mulch and potato hilling on development of foliar blight (Phytophthora infestans) and the control of tuber blight infection[J]. Potato Research, 2008, 51(2): 101-111.
    [34]马永林.不同播期对马铃薯晚疫病的影响[J].现代农业科技, 2008, (6): 86.
    [35]刘晓芸.对致病疫霉具拮抗作用的真菌XF的鉴定及抑菌活性研究[D]:河北农业大学, 2007.
    [36]刘洪斌,顾宝根,刘西莉,等.马铃薯晚疫病菌对甲霜灵抗性机制的初步研究[J].植物病理学报, 2003, 33(2): 178-182.
    [37]何丽丽,徐应明,孙有光,等.复配剂中霜脲氰在马铃薯和土壤中残留动态研究[J].农业环境科学学报, 2007, 26(1): 322-325.
    [38]袁善奎,刘西莉,刘亮,等.马铃薯晚疫病菌对烯酰吗啉的敏感性基线及其室内抗药突变体的研究[J].植物病理学报, 2005, 35(6): 545-551.
    [39]杨章华,黎军.甲霜灵锰锌浸种预防马铃薯晚疫病效果好[J].植物医生, 1998, (4): 29.
    [40]翟春伟,宋化稳,谢德明.甲呋酰胺的合成及其生物活性研究[J].山东化工, 2000, 29(6): 3-4.
    [41]鲁爱军,赵多长,刘天平,等. 7种药剂防治马铃薯晚疫病药效试验[J].甘肃农业科技, 2008, (4): 25-27.
    [42]何永福,何庆才,胡辉,等.不同杀菌剂对马铃薯晚疫病防治效果研究[J].中国马铃薯, 2003, 17(3): 64-66.
    [43]彭丽娟,马永操. 5种药剂防治马铃薯晚疫病田间药效试验[J].贵州农业科学, 2009, 37(12): 115-117.
    [44]姚国胜,吕国朝,杨志辉,等.马铃薯晚疫病菌对甲霜灵敏感性及交配型测定[J].华北农学报, 2007, 22(增刊): 260-262.
    [45] Forrer H, Musa T, Krebs H, et al. Control of Phytophthora infestans in organic potato production[J]. International Conferences, 2006.
    [46] Jindal K, Sing H, Madhu M, et al. Biological control of Phytophthora infestans on potato[J]. IndianJournal of Plant Pathology, 1988, 6(1): 59-62.
    [47] Filippov A, Kuznetsova M. Different influence of some biofungicides on dynamics of potato plant susceptibility to Phytophthora infestans (Mont.) de Bary[J]. Mikologiya I Fitopatologiya, 1994, 28(4): 64-69.
    [48] Cr bet A, Grozea I, Chirita R, et al. Biological control of late blight (Phytophthora infestans (Mont.) de Bary) in tomatoes with mycoextracts from Fusarium culmorum and Fusarium graminearum[J]. Communications in agricultural and applied biological sciences, 2008, 73(2): 257.
    [49]苏珍珠,罗文富,杨艳丽,等.植物内生真菌镰刀菌对马铃薯晚疫病菌的抑制研究[J].云南农业大学学报, 2009, 24(05): 667-672.
    [50]杨怀文,张志铭,杨秀芬,等.嗜线虫致病杆菌代谢物对马铃薯晚疫病菌的抑制作用[J].中国生物防治, 2000, 16(3): 111-113.
    [51]李玉华.嗜线虫杆菌代谢物对马铃薯晚疫病的防治效果[J].中国蔬菜, 2003, (4): 40.
    [52]蒋继志,赵丽坤,史娟,等.几种真菌发酵液对致病疫霉的抑制作用[J].微生物学通报, 2001, 28(2): 55-59.
    [53]郭会婧,蒋继志,李向彬,等.致病疫霉拮抗菌筛选及复合发酵液的抑菌作用研究[J].河北农业大学学报, 2008, (04): 87-90.
    [54]刘海珍,蒋继志,王会仙.致病疫霉拮抗菌梨黑斑病菌发酵条件的优化[J].河北农业大学学报, 2010, (01): 66-69.
    [55]李双东.枯草芽孢杆菌EB-28防治马铃薯晚疫病及其抗菌物质研究[D].保定:河北农业大学, 2009.
    [56]焦艳苓.番茄内生细菌Eb-28对番茄灰霉病菌抑制作用研究[D].保定:河北农业大学, 2008.
    [57]周红晞.高等植物源农药[J].农药译丛, 1994, 16(2): 1-6.
    [58]蒋继志,史娟,赵丽坤,等.几种植物提取物诱导马铃薯对致病疫霉的抗性(英文)[J].植物病理学报, 2001, (02): 144-151.
    [59]曹静,曹克强.中草药提取物Ts-86对马铃薯晚疫病菌的抑制作用[J].江苏农业科学, 2009, (3): 136-137.
    [60]王树桐,宋风平,胡同乐,等.知母提取物诱导马铃薯植株抗晚疫病作用机制初探[J].植物保护, 2009, (04): 34-38.
    [61]王树桐,曹克强,胡同乐,等.知母提取物对马铃薯晚疫病菌的抑制作用及防病效果[J].植物病理学报, 2006, 36(3): 267-272.
    [62]王树桐,王晓燕,刘均玲,等.对马铃薯晚疫病菌(Phytophthora infestans)有杀菌毒性的中草药的筛选[J].河北农业大学学报, 2001, 24(1): 101-107.
    [63]宋风平,王树桐,胡同乐,等.芒果苷对马铃薯晚疫病菌的抑菌作用机制初探[J].农药学学报, 2009, (02): 213-218.
    [64]胡同乐,王树桐,闫峰,等.影响五倍子水悬浮液对马铃薯晚疫病田间防治效果的主要气象因素[J].植物病理学报, 2008, (06): 619-625.
    [65] Zhou T, Reeleder R. Application of Epicoccum purpurascens spores to control white mold of snap bean[J]. Plant Disease (USA), 1989, 73: 639-642.
    [66] Madrigal C, Pascual S, Melgarejo P. Biological-Control of Peach Twig Blight (Monilinia-Laxa) with Epicoccum nigrum[J]. Plant Pathology, 1994, 43(3): 554-561.
    [67]赵桂华,石立岩,杨怀光,等.杨树内生真菌的分离和鉴定[J].南京林业大学学报(自然科学版), 2008, (02): 76-78.
    [68]李宝年,徐树辉,杨传波,等.樟子松枯梢病拮抗真菌的筛选[J].东北林业大学学报, 2004, (05): 97-99.
    [69]梁晨,吕国忠.辽宁省农田作物根围的真菌Ⅱ[J].沈阳农业大学学报, 2002, (04): 266-269.
    [70] Xiaoyun L. Biological characteristics of strain F603 of Epicoccon sp., an antagonistic fugus for controlling phytophthora infestans[J]. Frontiers of Agriculture in China, 2007, 1(2): 175-178.
    [71] Schol-Schwarz M. The genus Epicoccum Link[J]. Transactions of the British Mycological Society, 1959, 42(2): 149-173.
    [72]赵国柱.中国砖格丝孢菌20属的分类及5个相似属代表性种的分子系统学研究[D]:山东农业大学, 2003.
    [73] Dickinson C. Fungal colonization of Pisum leaves[J]. Canadian Journal of Botany, 1967, 45(6): 915-927.
    [74] Campbell W. The influence of associated microorganisms on the pathogenicity of Helminthosporium sativum[J]. Canadian Journal of Botany, 1956, 34(6): 865-874.
    [75] Goel R, Gupta A. A new glume blotch disease of wheat in India[J]. Plant Dis Rep, 1979, 63: 620.
    [76] Y.S.Paul, B.R.Thakur, V.Singh.不同储存条件下沙棘果采收后腐烂情况研究[J].国际沙棘研究与开发, 2004, (04): 1-3+20.
    [77] Hensel H, Prince H, Meyer G. Studies with two genera of Tuberculariaceae: Epicoccum and Fusarium[J]. Annals of allergy, 1974, 32(3): 121.
    [78] Ohtsubo K, Saito M, Ishiko T, et al. Toxicity to mice and HeLa cells and preliminary chemical examination of five fungi isolated from foodstuffs[J]. The Japanese journal of experimental medicine, 1978, 48(3): 257.
    [79] Melgarejo P, Carrillo R, Sagasta E. Mycoflora of peach twigs and flowers and its possible significance in biological control of Monilinia laxa[J]. Transactions of the British Mycological Society, 1985, 85(2): 313-317.
    [80] Mims CW, Richardson EA. Ultrastructure of sporodochium and conidium development in the anamorphic fungus Epicoccum nigrum[J]. Canadian Journal of Botany-Revue Canadienne De Botanique, 2005, 83(10): 1354-1363.
    [81] Brown AE, Finlay R, Ward JS. Antifungal compounds produced by Epicoccum purpurascens against soil-borne plant pathogenic fungi[J]. Soil Biology & Biochemistry, 1987, 19(6): 657-664.
    [82] Mercier J, Reeleder R. Interactions between Sclerotinia sclerotiorum and other fungi on the phylloplane of lettuce[J]. Canadian Journal of Botany, 1987, 65(8): 1633-1637.
    [83] Melgarejo P, Carrillo R, Sagasta E. Potential for biological control of Monilinia laxa in peach twigs[J]. Crop Protection, 1986, 5(6): 422-426.
    [84] Larena I, a, Melgarejo P. Solid substrate production of Epicoccum nigrum conidia for biological controlof brown rot on stone fruits[J]. International Journal of Food Microbiology, 2004, 94(2): 161-167.
    [85] Zhou T, Reeleder R, Sparace S. Interactions between Sclerotinia sclerotiorum and Epicoccum purpurascens[J]. Canadian Journal of Botany, 1991, 69(11): 2503-2510.
    [86] Bamford P, Norris G, Ward G. Flavipin production by Epicoccum spp[J]. Transactions of the British Mycological Society, 1961, 44(3): 354-356.
    [87] Burge W, Buckley L, Sullivan Jr J, et al. Isolation and biological activity of the pigments of the mold Epicoccum nigrum[J]. Journal of Agricultural and Food Chemistry, 1976, 24(3): 555.
    [88] Gribanovski-Sassu O, Foppen FH. The carotenoids of the fungus Epicoccum nigrum link[J]. Phytochemistry, 1967, 6: 907-909.
    [89] Baute M, Deffieux G, Baute R, et al. New antibiotics from the fungus Epicoccum nigrum[J]. The Journal of Antibiotics,1978, 31(11): 1099-1101.
    [90] Foppen F. On some pigments of Epicoccum nigrum Link: their isolation and structure elucidation and a biosynthetic pathway of rhodoxanthin[J]. Annali dell'Istituto superiore di sanit¨¤, 1969, 5(5): 439.
    [91] Martin J, Richards S, Haider K. Properties and decomposition and binding action in soil of" humic acid" synthesized by Epicoccum nigrum[J]. Soil Science Society of America Journal, 1967, 31(5): 657.
    [92] Harman G, Jin X, Stasz T, et al. Production of conidial biomass of Trichoderma harzianum for biological control[J]. Biological Control, 1991, 1(1): 23-28.
    [93] Masangkay R, Paulitz T, Hallett S, et al. Solid Substrate Production of Alternaria alternata f. sp. sphenocleae Conidia[J]. Biocontrol Science and Technology, 2000, 10(4): 399-409.
    [94] Ridder E, Nokes S, Knutson B. Optimization of solid-state fermentation parameters for the production of xylanase by Trichoderma longibrachiatum on wheat bran[J]. Transactions of the ASAE, 1998, 41(5): 1453-1459.
    [95] Pascual S, Melgarejo P, Magan N. Production of the fungal biocontrol agent Epicoccum nigrum by solid substrate fermentation: effect of water activity on accumulation of compatible solutes[J]. Mycopat -hologia, 1999, 146(2): 83-89.
    [96] Foster E. Culture preservation[J]. Journal of Dairy Science, 1962, 45: 1290-1294.
    [97] Bryant J. Commercial production and formulation of Bacillus thuringiensis[J]. Agriculture, Ecosystems and Environment, 1994, 49(1): 31-35.
    [98] Larena I, a, Li?án M, et al. Drying of Epicoccum nigrum conidia for obtaining a shelf-stable biological product against brown rot disease[J]. Journal of Applied Microbiology, 2003, 94(3): 508-514.
    [99] Larena I, Torres R, De Cal A, et al. Biological control of postharvest brown rot (Monilinia spp.) of peaches by field applications of Epicoccum nigrum[J]. Biological Control, 2005, 32(2): 305-310.
    [100] Brown AE. Epicoccum nigrum, a primary saprophyte involved in the retting of flax[J]. Transactions of the British Mycological Society, 1984, 83(1): 29-35.
    [101] De Cal A, Sagasta E, Melgarejo P. Antifungal substances produced by Penicillium frequentans and their relationship to the biocontrol of Monilinia laxa[J]. Phytopathology, 1988, 78(7): 888-893.
    [102] Madrigal C, Melgarejo P. Morphological Effects of Epiccocum nigrum and Its Antibiotic Flavipin on Monilinia laxa[J]. Canadian Journal of Botany-Revue Canadienne De Botanique, 1995,73(3): 425-431.
    [103] Madrigal C, Tadeo JL, Melgarejo P. Relationship between flavipin production by Epicoccum nigrum and antagonism against Monilinia laxa[J]. Mycological Research, 1991, 95(12): 1375-1381.
    [104] Raistrick H, Rudman P. Studies in the biochemistry of micro-organisms, 97. Flavipin, a crystalline metabolite of aspergillus flavipes ( bainier &sartory ) thom & church and aspergillus thom[J]. intermediates in haem biosynthesis, 1956, 63: 395-406.
    [105] Larena I, Cal AD, Melgarejo P. Effects of stabilizers on shelf-life of Epicoccum nigrum formulations and their relationship with biocontrol of postharvest brown rot by Monilinia of peaches[J]. Journal of Applied Microbiology, 2007, 102: 570-582.
    [106] De Cal A, Larena I, Linan M, et al. Population dynamics of Epicoccum nigrum, a biocontrol agent against brown rot in stone fruit[J]. Journal of Applied Microbiology, 2009, 106(2): 592-605.
    [107] Andrews J. Biological control in the phyllosphere[J]. Annual Review of Phytopathology, 1992, 30(1): 603-635.
    [108] V lksch B, May R. Biological control of Pseudomonas syringae pv. glycinea by epiphytic bacteria under field conditions[J]. Microbial Ecology, 2001, 41(2): 132-139.
    [109] Castilho L, Polato C, Baruque E. Economic analysis of lipase production by Penicillium restrictum in solid-state and submerged fermentations[J]. Biochemical Engineering Journal, 2000, 4(3): 239-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700