用户名: 密码: 验证码:
离子液体辅助下贵金属纳米材料的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料是纳米科技应用的基础,贵金属纳米粒子尤其是Au、Ag纳米微粒的尺寸和形貌控制以及相应的物理化学性质一直是纳米材料科学研究的热点。离子液体作为一种新型的“绿色化学产品”,受到了众多科研工作者的广泛关注。近年来,在离子液体辅助下制备纳米材料的报道已有出现。离子液体的较低界面张力和超分子自组装能力可为纳米材料的制备提供新的方法。本论文将离子液体的这两种作用应用于贵金属纳米材料的制备中,首先,在少量的咪唑型短链离子液体辅助下,通过乙二醇法制备出Ag纳米棒;之后,在短链和长链离子液体共同辅助下,制备了Au和Pt的纳米花状物。论文的具体内容如下:
     第一章从纳米材料和离子液体的概念入手,对它们的研究现状进行了概述。之后又简要介绍了国内外关于在离子液体辅助下制备贵金属纳米材料的研究背景,为论文的研究提供了理论依据。最后,阐述了本论文选题的科学意义。
     第二章系统地研究了在少量短链离子液体1-丁基-3-甲基咪唑四氟硼酸盐(bmimBF4辅助下,在130℃通过乙二醇还原得到了Ag纳米棒。首先,通过扫描电镜(SEM)和透射电镜(TEM)确定了产物的形貌和纯度。又用高分辨电镜(HRTEM)和电子衍射(ED)证明了产物的生长方向。然后,结合时间和其它辅助剂对产物的影响,确定了产物的形成机理。结果表明银纳米棒是由五重挛晶结构的纳米颗粒沿(111)面生长形成的。实验证实离子液体的较低界面张力可促使小颗粒通过奥氏熟化快速形成,离子液体在实验中起着不可或缺的作用。在此基础上,将原来的两步反应简化为一步反应,大大缩短了反应时间,但也同样得到了形貌和尺寸均一的银纳米棒。还研究了产物的光学性能,紫外可见光谱的表征证实Ag纳米棒具有良好的表面增强的等离子共振(SPR)性质。此外,我们选用R6G为探针分子研究了Ag纳米棒形成的自组装膜作为表面增强的拉曼散射(SERS)基底的增强效应,结果表明即使R6G的浓度非常低,使用Ag纳米棒自组装膜基底仍能够探测到在一般拉曼谱图中无法探测的信号。
     第三章研究了在短链离子液体bmimBF4和长链离子液体C12mimBr共同辅助下,制备出Au和Pt的纳米花状物。通过扫描电镜(SEM)和透射电镜(TEM)对产物的形貌进行了表征。又通过电子能谱仪(EDS)确定了产物的纯度。电子衍射(ED)确定了产物的晶型。结果表明,花状产物是由纳米板自组装形成的,离子液体bmimBF4的咪唑环之间的π-π堆积作用是纳米板进行自组装的基础。此外,两种离子液体C12mimBr和bmimBF4的质量比对纳米花状物的形成有着决定性的影响。
Nanomaterials were the base of the application of nanotechnology. The synthesis of noble metal nanostructured materials especially Au, Ag nanoparticles with controllable size and morphology was always attractive in the field of nanomaterials. As a "green" chemical product, ionic liquids (ILs) have currently attracted significant attention. Recently, the preparation of nanomaterials with the assistance of ILs was reported in the literature. The lower interface tensions and supramolecular self-assembly of ILs provide new methods for the synthesis of nanomaterials. In this dissertation, we prepared silver nanorods through ethylene glycol (EG) reduction in the presence of imidazole-based ionic liquid (IL) and polyvinyl pyrrolidone (PVP). In addition, with the assistance of short-chain and long-chain ILs, the flower-like nanomaterials of Au and Pt were synthesized. The outline and contents of this dissertation were as follows:
     Chapter one was a brief introduction of the research background of this work, in which a review of nanomaterials and ILs are present, and then the history and recent progress in the preparation of nanomaterials associated with ILs are reviewed. The objective and the scientific significance of this dissertation were also pointed out at the end of this part.
     In Chapter two, the preparation of silver nanorods in the presence of IL 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4) was investigated in detail. First, the shape of products was conformed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Then the growth direction was verified through the high resolution transmission electron microscope (HRTEM) and electron diffraction (ED). The formation mechanism was investigated by exploring the influence of time and other modulators on the products. The results demonstrated that the silver nanrods evolved from multiply twinned nanoparticles with a decahedral shape along (111) facet. Low interface tensions of bmimBF4 result in high nucleation rates, very small particles can be generated which undergo Ostwald ripening. BmimBF4 played a crucial role in the process. Moreover, the synthesis process was simplified to a "one-step reaction", and the reaction time was shortened to three hours. The products were silver nanorods with uniform dimension and shape all the same. The optical property of nanorods was investigated by UV-Vis spectra. The results showed silver nanorods possessed well surface plasmon resonance (SPR). Whats more, the surface-enhanced Raman scattering (SERS) of self-assembled silver nanorod array film with the Rhodamine 6G (R6G) as the probe molecule was also investigated. The results demonstrated that using the array film substrate could detect SERS signal of R6G even that the concentration of R6G was very low.
     In chapter three, the synthesis of flower-like Au/Pt nanomaterials in the presence of ILs 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4) and 1-dodecyl-3-methylimidazolium bromide (C12mimBr) was investigated. The dimension and morphology of the products were characterized by SEM and TEM. The purity was confirmed by electron energy disperse spectroscopy (EDS). The crystal was proved by electron diffraction (ED). The results demonstrated that flower-like nanomaterials were formed by self-assembled nanoplates. This self-assembly process was supported byπ-πstack interaction of the neighboring imidazolium rings of bmimBF4. Furthermore, the mass ratio between C12mimBr and bmimBF4 played an important role in the formation process.
引文
[1]倪星元,沈军,张志华.纳米材料的理化性质与应用[M].北京:化学工业出版社,2005,3-8.
    [2]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001,476.
    [3]Gai, P. L.; Harmer, M. A.. Surface Atomic Defect Structures and Growth of Gold Nanorods [J]. Nano Lett.2002,2 (7):771-774.
    [4]Kuang, D. B.; Xu, A. W.; Fang, Y. P.; Liu, H. Q.; Frommen, C; Fenske, D.. Surfactant-Assisted Growth of Novel PbS Dendritic Nanostructures via Facile Hydrothermal Process [J]. Adv. Mater.2003,15 (20):1747-1750.
    [5]Munoz-Hernandez, G.; Escobedo-Morales, A.; Pal, U.. Thermolytic Growth of ZnO Nanocrystals:Morphology Control and Optical Properties [J]. Cryst. Growth Des.2009,9(1):297-300.
    [6]Huang, S. X.; Ma, H. Y.; Zhang, X. K.; Yong, F. F.; Feng, X. L.; Pan, W.; Wang, X. N.; Wang, Y.; Chen, S. H.. Electrochemical Synthesis of Gold Nanocrystals and Their 1D and 2D Organization [J]. J. Phys. Chem. B 2005,109 (42):19823-19830.
    [7]Gu, C. D.; Zhang, T-Y. Electrochemical Synthesis of Silver Polyhedrons and Dendritic Films with Superhydrophobic Surfaces [J]. Langmuir 2008,24 (20): 12010-12016.
    [8]Shi, H. T.; Qi, L. M.; Ma, J. M.; Cheng, H. M.; Zhu, B. Y. Synthesis of Hierarchical Superstructures Consisting of BaCrO4 Nanobelts Catanionic Reverse Micelles [J].Adv. Mater.2003,15 (19):1647-1651.
    [9]Sachdeva, A.; Sodaye, S.; Pandey, A. K.; Goswami, A.. Formation of Silver Nanoparticles in Poly(perfluorosulfonic) Acid Membrane [J]. Anal. Chem.2006,78 (20):7169-7174
    [10]Guo, Y G.; Hu, J. S.; Zhang, H. M.; Liang, H. P.; Wan, L. J.; Bai, C. L. Tin/Platinum Bimetallic Nanotube Array and its Electrocatalytic Activity for Methanol Oxidation [J]. Adv. Mater.2005,17 (6):746-750.
    [11]Yang, J.; Lee, J. Y; Too, H-P.. Core-Shell Ag-Au Nanoparticles from Replacement Reaction in Organic Medium [J]. J. Phys. Chem. B 2005,109 (41): 19208-19212.
    [12]李玲,向航.功能材料与纳米技术[M].北京:化学工业出版社,2002,1-5.
    [13]Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A.. Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods [J]. J. Am. Chem. Soc.2006,128 (6):2115-2120.
    [14]Alivisatos, A. P.. The Use of Nanocrystals in Biological Detection [J]. Nat. Biotechnol.2004,22 (1):47-52.
    [15]Katz, E.; Willner, I.. Integrated Nanoparticle-Biomolecule Hybrid Systems: Synthesis, Properties, and Applications [J]. Angew. Chem., Int. Ed.2004,43 (45): 6042-6108.
    [16]Yguerabide, J.; Yguerabide, E. E.. Light-Scattering Submicroscopic Particles as Highly Fluorescent Analogs and Their Use as Tracer Labels in Clinical and Biological Applications I. and II [J]. Anal. Biochem.1998,262 (2):137-176.
    [17]Sonnichsen, C.; Reinhard, B. M.; Liphardt, J.; Alivisatos, A. P.. A Molecular Ruler Based on Plasmon Coupling of Single Gold and Silver Nanoparticles [J]. Nat. Biotechnol.2005,23 (6):741-745.
    [18]Kang, B.; Mackey, M. A.; El-Sayed, M. A.. Nuclear Targeting of Gold Nanoparticles in Cancer Cells Induces DNA Damage, Causing Cytokinesis Arrest and Apoptosis [J]. J. Am. Chem. Soc.2010,132 (5):1517-1519.
    [19]Sun, Y. G.; Xia, Y. N.. Shape-Controlled Synthesis of Gold and Silver Nanoparticles [J]. Science 2002,298 (5601):2176-2179.
    [20]Sun, Y. G.; Yin, Y. D.; Mayers, B. T.; Herricks, T.; Xia, Y. N.. Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone) [J]. Chem. Mater.2002,14 (11):4736-4745.
    [21]Sun, Y. G.; Mayers, B.; Herricks, T.; Xia, Y. N.. Polyol Synthesis of Uniform Silver Nanowires:A Plausible Growth Mechanism and the Supporting Evidence [J]. Nano Lett.2003,3 (7):955-960.
    [22]Chen, J. Y; Herricks, T.:Geissler, M.; Xia, Y. N.. Single-Crystal Nanowires of Platinum Can Be Synthesized by Controlling the Reaction Rate of a Polyol Process [J].J. Am. Chem. Soc.2004,126 (35):10854-10855.
    [23]Wiley, B.; Herricks, T.; Sun, Y. G.; Xia, Y. N.. Polyol Synthesis of Silver Nanoparticles:Use of Chloride and Oxygen to Promote the Formation of Single-Crystal, Truncated Cubes and Tetrahedrons [J]. Nano Lett.2004,4 (9): 1733-1739.
    [24]Au, L.; Lu, X. M.; Xia, Y. N.. A Comparative Study of Galvanic Replacement Reactions Involving Ag Nanocubes and AuCl2- or AuCl4- [J]. Adv. Mater.2008,20 (13):2517-2522.
    [25]Li, W. Y.; Camargo, P. H. C; Lu, X. M; Xia, Y. N.. Dimers of silver nanospheres:facile synthesis and their use as hot spots for surface-enhanced Raman scattering [J]. Nano Lett.2009,9 (1):485-490.
    [26]Zeng, J.; Zhang, Q.; Chen, J. Y; Xia, Y. N.. A Comparison Study of the Catalytic Properties of Au-Based Nanocages, Nanoboxes, and Nanoparticles [J]. Nano Lett. 2010,10(1):30-35.
    [27]Sun, Y. G.; Yin, Y. D.; Mayers, B. T.; Herricks, T.; Xia, Y. N.. Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone) [J]. Chem. Mater.2002,14 (11):4736-4745.
    [28]Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A.. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition:Applications in Biological Imaging and Biomedicine [J]. J. Phys. Chem. B 2006,110 (14):7238-7248.
    [29]Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical Properties of Metal Nanoparticles:The Influence of Size, Shape, and Dielectric Environment [J]. J. Phys. Chem. B 2003,107 (3):668-677.
    [30]Kreibig, U.; Vollmer, M.. Optical Properties of Metal Clusters [M]. Berlin: Springer,1995.
    [31]Link, S.; El-Sayed, M. A.. Optical Properties and Ultrafast Dynamics of Metallic Nanocrystals [J].Annu. Rev. Phys. Chem.2003,54 (1):331-366.
    [32]Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A. Review of Some Interesting Surface Plasmon Resonance-Enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems [J]. Plasmonics 2007,2 (3): 107-118.
    [33]Eustis, S.; El-Sayed, M. A.. Why Gold Nanoparticles are More Precious than Pretty Gold:Noble Metal Surface Plasmon Resonance and Its Enhancement of the Radiative and Nonradiative Properties of Nanocrystals of Different Shapes [J]. Chem. Soc.Rev.2006,35 (3):209-217.
    [34]Jain, P. K.; Huang, X. H.; EL-Sayed, I. H.; EL-Sayed, M. A.. Noble Metals on the Nanoscale:Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine [J]. Acc. Chem. Res.2008,41 (12): 1578-1586.
    [35]Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A.. Cancer Cells Assemble and Align Gold Nanorods Conjugated to Antibodies to Produce Highly Enhanced, Sharp, and Polarized Surface Raman Spectra:A Potential Cancer Diagnostic Marker [J]. Nano Lett.2007,7 (6):1591-1597.
    [36]Nagy, A.; Mestl, G.. High Temperature Partial Oxidation Reactions over Silver Catalysts [J].Appl. Catal, A 1999,188 (1-2):337-353.
    [37]Abdallah, D. J.; Bachman, R. E.; Perlstein, J.; Weiss, R. G. Crystal structures of symmetrical Tetra-n-Alkyl ammonium and phosphonium halides. Dissection of competing interactions leading to "biradial" and "tetraradial" shapes [J]. J. Phys. Chem B 1999,103 (43):9269-9278.
    [38]Larsen, A. S.; Holbrey, J. D.; Tham, F. S.; Reed, C. A.. Designing ionic liquids: imidazolium melts with inert carborane anions [J]. J. Am. Chem. Soc.2000,122 (30): 7264-7272.
    [39]Chen, H.; Kwait, D. C; Gonen, Z. S.; Weslowski, B. T.; Abdallah, D. J.; Weiss, R. G. Phase characterization and properties of completely saturated quaternary phosphonium salts. Ordered, room-temperature ionic liquids [J]. Chem. Mater.2002, 14 (10):4063-4072.
    [40]高艳安.在绿色溶剂中超分子结构研究——微乳液,环糊精与离子液包容相 互作用.博士学位论文(山东大学)2005,18-19.
    [41]Wang, Z. N.; Liu, F.; Gao, Y. A.; Zhuang, W. C; Xu, L. M.; Han, B. X.; Li, G Z.; Zhang, G D.. Hexagonal liquid crystanlline phases formed in ternary systems of Brij97/water/ionic liquids [J]. Langmuir 2005,21 (11):4931-4937.
    [42]Audic, N.; Clavier, H.; Mauduit, M.; Guillemin, J. C. An ionic liquid-supported ruthenium carbene complex:a robust and recyclable catalyst for ring-closing olefin metathesis in ionic liquids [J]. J. Am. Chem. Soc.2003,125 (31):9248-9249.
    [43]Fletcher, K. A.; Pandey, S.. Surfactant aggregation within room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [J]. Langmuir 2004,20 (1):33-36.
    [44]Welton, T.. Room-temperature ionic liquids. Solvents for synthesis and catalysis [J]. Chem. Rev.1999,99 (8):2071-2084.
    [45]Avery, T. D.; Jenkis, N. F.; Kimber, M. C; Lupton, D. W.; Taylor, D. K.. First examples of the catalytic asymmetric ring-opening of meso 1,2-dioxines utilising cobalt(II) complexes with optically active tetradentate Schiff base ligands:formation of enantio-enriched cyclopropanes [J]. Chem. Commun.2002, (1):28-29.
    [46]Zerth, H. M.; Leonard, N. M.; Mohan, R. S.. Synthesis of homoallyl ethers via allylation of acetals in ionic liquids catalyzed by trimethylsilyl trifluoromethane-sulfonate [J]. Org. Lett.2003,5 (1):55-57.
    [47]Huddieston, J. G; Willauer, H. D.; Swauoski, R. P.; Visser, A. E.; Rogers, K. D.. Room temperature ionic liquids as novel media for'clean'liquid-liquid extraction [J]. Chem. Commun.1998,(16):1765-1766.
    [48]Anderson, J. L.; Ding, J.; Welton, T.; Armstong, D. W. Characterizing ionic liquids on the basis of multiple solvation interactions [J]. J. Am. Chem. Soc.2002,124 (47):14247-14254.
    [49]Wang, P.; Zakeeruddion, S. M; Comte, P.; Exnar, I.; Gratzel, M.. Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells [J]. J. Am. Chem. Soc.2003,125 (5):1166-1167.
    [50]Baker, S. N.; Baker, G. A.; Bright, F. V.. Temperature-dependent microscopic solvent properties of'dry'and 'wet' 1-butyl-3-methylimidazolium hexafluoro phosphate:correlation with ET (30) and kamlet-taft polarity scales [J]. Green Chem. 2002,(2):165-169.
    [51]Antonietti, M.; Kuang, D. B.; Smarsly, B.; Zhou, Y.. Ionic Liquids for the Convenient Synthesis of Functional Nanoparticles and Other Inorganic Nanostructures [J]. Angew. Chem. Int. Ed.2004,43 (38):4988-4992.
    [52]Elaiwi, A.; Hitchcock, P. B.; Seddon, K. R.; Srinivasan, N.; Tan, Y-M; Welton, T.; Zora, J. A.. Hydrogen bonding in imidazolium salts and its implications for ambient-temperature halogenoaluminate (III) ionic liquids [J]. J. Chem. Soc. Dal ton Trans.1995, (21):3467-3472.
    [53]Mele, A.; Tran, C. D.; Lacerda, S. H. D.. The Structure of a Room-Temperature Ionic Liquid with and without Trace Amounts of Water: The Role of C…H…O and C…H…F Interactions in 1-n-Butyl-3-Methylimidazolium Tetrafluoroborate [J]. Angew. Chem. Int. Ed.2003,42 (36):4364-4366.
    [54]Saha, S.; Hayashi, S.; Kobayashi, A.; Hamaguchi, H.. Crystal Structure of 1-Butyl-3-methylimidazolium Chloride. A Clue to the Elucidation of the Ionic Liquid Structure [J]. Chem. Lett.2003,32 (8):740-741.
    [55]Kim, K. S.; Demberelnyamba, D.; Lee, H.. Size-Selective Synthesis of Gold and Platinum Nanoparticles Using Novel Thiol-Functionalized Ionic Liquids [J]. Langmuir 2004,20 (3):556-560.
    [56]Itoh, H.; Naka, K.; Chujo, Y. Synthesis of Gold Nanoparticles Modified with Ionic Liquid Based on the Imidazolium Cation [J]. J. Am. Chem. Soc.2004,126 (10): 3026-3027.
    [57]Wang, Y; Yang, H.. Synthesis of CoPt Nanorods in Ionic Liquids [J]. J. Am. Chem. Soc.2005,127 (15):5316-5317.
    [58]Li, Z. H.; Liu, Z. M.; Zhang, J. L.; Han, B. X.; Du, J. M.; Gao, Y. A.; Jiang, T.. Synthesis of Single-Crystal Gold Nanosheets of Large Size in Ionic Liquids [J]. J. Phys. Chem. B 2005,109 (30):14445-14448.
    [59]Chen, H. J.; Dong, S. J.. Self-Assembly of Ionic Liquids-Stabilized Pt Nanoparticles into Two-Dimensional Patterned Nanostructures at the Air-Water Interface [J]. Langmuir 2007,23 (25):12503-12507.
    [60]Qin, Y.; Song, Y.; Sun, N. J.; Zhao, N. N.; Li, M. X.; Qi, L. M.. Ionic Liquid-Assisted Growth of Single-Crystalline Dendritic Gold Nanostructures with a Three-Fold Symmetry [J]. Chem. Mater.2008,20 (12):3965-3972.
    [61]Ryu, H. J.; Sanchez, L.; Keul, H. A.; Raj, A.; Bockstaller, M. R.. Imidazolium-Based Ionic Liquids as Efficient Shape-Regulating Solvents for the Synthesis of Gold Nanorods [J]. Angew. Chem. Int. Ed 2008,47 (40):7639-7643.
    [62]Gao, Y. N.; Voigt, A.; Zhou, M.; Sundmacher, K.. Synthesis of Single-Crystal Gold Nano-and Microprisms Using a Solvent-Reductant-Template Ionic Liquid [J]. Eur. J. Inorg. Chem.2008, (24):3769-3775.
    [63]Bai, X. T.; Zheng, L. Q.; Li, N.; Dong, B.; Liu, H. G.. Synthesis and Characterization of Microscale Gold Nanoplates Using Langmuir Monolayers of Long-Chain Ionic Liquid [J]. Cryst. Growth Des.2008,8 (10):3840-3846.
    [64]Kim, T. Y; Kim, W. J.; Hong, S. H.; Kim, J. E.; Suh, K. S.. Ionic-Liquid-Assisted Formation of Silver Nanowires [J]. Angew. Chem. Int. Ed.2009,48 (21):3806-3809.
    [1]Prokes, S. M.; Wang, K. L.. Novel Methods of Nanoscale Wire Formation [J]. MRS Bulletin 1999,24(8):13-19.
    [2]Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M.. Nanowire Nanosensors for Highly Sensitive and Selectiv Detection of Biological and Chemical Species [J]. Science 2001,293(5533):1289-1292.
    [3]Hu, J.; Odom, T. W.; Lieber, C. M.. Chemistry and Physics in One Dimension:Synthesis and Properties of Nanowires and Nanotubes [J]. Ace. Chem. Res.1999,32 (5):435-445.
    [4]Zhang, Z.; Sun, X.; Dresselhaus, M. S.; Ying, J. Y.. Electronic transport properties of single-crystal bismuth nanowire arrays [J]. Phys. ReV. B 2000,61 (7): 4850-4861.
    [5]Bockrath, M; Liang, W.; Bozovic, D.; Hafner, J. H.; Lieber, C. M.; Tinkham, M.; Park, H.. Resonant Electron Scattering by Defects in Single-Walled Carbon Nanotubes [J]. Science 2001,291 (5502):283-285.
    [6]Li, W. Y.; Camargo, P. H. C; Lu, X. M.; Xia, Y. N.. Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering [J]. Nano Lett.2009,9(1):485-490.
    [7]Link, S.; El-Sayed, M. A.. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods [J]. J. Phys. Chem. B 1999,103 (40):8410-8426.
    [8]Placido, T.; Comparelli, R.; Giannici, F.; Cozzoli, P. D.; Capitani, G.; Striccoli, M.; Agostiano, A.; Curri, M. L.. Photochemical Synthesis of Water-Soluble Gold Nanorods:The Role of Silver in Assisting Anisotropic Growth [J]. Chem. Mater. 2009,21 (18):4192-4202.
    [9]Pietrobon, B.; McEachran, M.; Kitaev, V.. Synthesis of Size-Controlled Faceted Pentagonal Silver Nanorods with Tunable Plasmonic Properties and Self-Assembly of These Nanorods [J]. ACS Nano 2009,3 (1):21-26.
    [10]Bai, X. T.; Zheng, L. Q.; Li, N.; Dong, B.; Liu, H. G.. Synthesis and Characterization of Microscale Gold Nanoplates Using Langmuir Monolayers of Long-Chain Ionic Liquid [J]. Cryst. Growth Des.2008,8 (10):3840-3846.
    [11]Caswell, K. K.; Bender. C. M.; Murphy, C. J.. Seedless, Surfactantless Wet Chemical Synthesis of Silver Nanowires [J]. Nano Lett.2003,3 (5):667-669.
    [12]Sun, Y. G.; Xia, Y. N.. Large-Scale Synthesis of Uniform Silver Nanowires Through a Soft, Self-Seeding, Polyol Process [J]. Adv. Mater.2002,14 (11):833-837.
    [13]Gou, L. F.; Chipara, M.; Zaleski, J. M.. Convenient, Rapid Synthesis of Ag Nanowires [J]. Chem. Mater.2007,19 (7):1755-1760.
    [14]Sun, S. H.; Yang, D. Q.; Villers, D.; Zhang, G. X.; Sacher, E.; Dodelet, J. P.. Template-and Surfactant-free Room Temperature Synthesis of Self-Assembled 3D Pt Nanoflowers from Single-Crystal Nanowires [J]. Adv. Mater.2008,20 (3):571-574.
    [15]Liu, S. W.; Yue, J.; Gedanken, A.. Synthesis of Long Silver Nanowires from AgBr Nanocrystals [J]. Adv. Mater.2001,13 (9):656-658.
    [16]Zhou, Y.; Yu, S. H.; Wang, C. Y.; Li, X. G.; Zhu, Y. R.; Chen, Z. Y.. A Novel Ultraviolet Irradiation Photoreduction Technique for the Preparation of Single-Crystal Ag Nanorods and Ag Dendrites [J]. Adv. Mater.1999,11 (10):850-852.
    [17]Fievet, F.; Lagier, J. P.; Figlarz, M.. Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process [J]. MRS Bulletin 1989,14 (12):29-40.
    [18]Sun, Y. G.; Xia, Y. N.. Shape-Controlled Synthesis of Gold and Silver Nanoparticles [J]. Science 2002,298 (5601):2176-2179.
    [19]Wiley, B.; Sun, Y. G.; Xia, Y. N.. Synthesis of Silver Nanostructures with Controlled Shapes and Properties [J]. Acc. Chem. Res.2007,40 (10):1067-1076.
    [20]Zhang, W. J.; Chen, P.; Gao, Q. S.; Zhang, Y. H.; Tang, Y.. High-Concentration Preparation of Silver Nanowires:Restraining in Situ Nitric Acidic Etching by Steel-Assisted Polyol Method [J]. Chem. Mater.2008,20 (5):1699-1704.
    [21]Taguchi, A.; Fujii, S.; Ichimura, T.; Verma, P.; Inouye, Y.; Kawata, S.. Oxygen-assisted shape control in polyol synthesis of silver nanocrystals [J]. Chem. Phys. Lett.2008,462 (1-3):92-95.
    [22]Qin, Y.; Song, Y.; Sun, N. J.; Zhao, N. N.; Li, M. X.; Qi, L. M.. Ionic Liquid-Assisted Growth of Single-Crystalline Dendritic Gold Nanostructures with a Three-Fold Symmetry [J]. Chem. Mater.2008,20 (12):3965-3972.
    [23]Kim, K-S.; Demberelnyamba, D.; Lee, H.. Size-Selective Synthesis of Gold and Platinum Nanoparticles Using Novel Thiol-Functionalized Ionic Liquids [J]. Langmuir 2004,20 (3):556-560.
    [24]Zhao, M. W.; Zheng, L. Q.; Bai, X. T.; Li, N.; Yu, L.. Fabrication of silica nanoparticles and hollow spheres using ionic liquid microemulsion droplets as templates [J]. Colloids Surf. A:Physicochem. Eng. Aspects 2009,346 (1-3):229-236.
    [25]Dupont, J.; Consorti, C. S.; Suarez, P. A. Z.; de Souza, R. F.; Fulmer, S. L.; Richardson, D. P.; Smith, T. E.; Wolff, S.. Preparation of 1-butyl-3-methyl imidazolium-based room-temperature ionic liquids [J]. Org. Synth.2002,79 (3): 236-241.
    [26]Sun, Y. G.; Mayers, B.; Herricks, T.; Xia, Y. N.. Polyol Synthesis of Uniform Silver Nanowires:A Plausible Growth Mechanism and the Supporting Evidence [J]. Nano Lett.2003,3 (7):955-960.
    [27]Chen, H. Y.; Gao, Y.; Zhang, H. R.; Liu, L. B.; Yu, H. C.; Tian, H. F.; Xie, S. S.; Li, J. Q.. Transmission-Electron-Microscopy Study on Fivefold Twinned Silver Nanorods [J]. J. Phys. Chem. B 2004,108 (32):12038-12043.
    [28]Redel, E.; Thomann, R.; Janiak, C. Use of ionic liquids (ILs) for the IL-anion size-dependent formation of Cr, Mo and W nanoparticles from metal carbonyl M(CO)6 precursors [J]. Chem. Commun.2008, (15):1789-1791.
    [29]Gao, Y. N.; Voigt, A.; Zhou, M.; Sundmacher, K.. Synthesis of Single-Crystal Gold Nano-and Microprisms Using a Sol vent-Reductant-Template Ionic Liquid [J]. Eur. J. Inorg. Chem.2008, (24):3769-3775.
    [30]Sun, Y. G.; Yin, Y. D.; Mayers, B. T.; Herricks, T.; Xia, Y. N.. Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone) [J]. Chem. Mater.2002,14(11):4736-4745.
    [31]Ah, C. S.; Hong, S. D.; Jang, D-J.. Preparation of AucorcAgShell Nanorods and Characterization of Their Surface Plasmon Resonances [J]. J. Phys. Chem. B 2001, 105 (33):7871-7873.
    [32]Hildebrandt, P.; Stockburger, M.. Surface-Enhanced Resonance Raman Spectroscopy of Rhodamine 6G Adsorbed on Colloidal Silver [J]. J. Phys. Chem. 1984,88 (24):5935-5944.
    [33]Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A.. Cancer Cells Assemble andAlign Gold Nanorods Conjugated to Antibodies to Produce Highly Enhanced, Sharp, and Polarized Surface Raman Spectra:A Potential Cancer Diagnostic Marker [J]. Nano Lett.2007,7 (6):1591-1597.
    [1]Service, R. F.. HYDROGEN POWER:Bringing Fuel Cells Down to Earth [J]. Science 1999,285 (5428):682-685.
    [2]Kordesch, K. V.; Simader, G. R.. Environmental Impact of Fuel Cell Technology [J]. Chem. Rev.1995,95 (1):191-207.
    [3]Hrapovic, S.; Liu, Y. L.; Male, K. B.; Luong, J. H. T.. Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes [J]. Anal. Chem. 2004,76(4):1083-1088.
    [4]Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A.. Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods [J]. J. Am. Chem. Soc.2006,128 (6):2115-2120.
    [5]Bell, A. T.. The Impact of Nanoscience on Heterogeneous Catalysis [J]. Science 2003,299(5613):1688-1691.
    [6]Antolini, E.. Formation of carbon-supported PtM alloys for low temperature fuel cells:a review [J]. Mater. Chem. Phys.2003,78 (3):563-573.
    [7]Rolison, D. R.. Catalytic Nanoarchitectures--the Importance of Nothing and the Unimportance of Periodicity [J]. Science 2003,299 (5613):1698-1701.
    [8]Song, Y. J.; Yang, Y.; Medforth, C. J.; Pereira, E.; Singh, A. K.; Xu, H. F.; Jiang, Y. B.; Brinker, C. J.; Swol, F.; Shelnutt, J. A.. Controlled Synthesis of 2-D and 3-D Dendritic Platinum Nanostructures [J]. J. Am. Chem. Soc.2004,126 (2):635-645.
    [9]Narayanan, R.; El-Sayed, M. A.. Effect of Nanocatalysis in Colloidal Solution on the Tetrahedral and Cubic Nanoparticle shape:Electron-Transfer Reaction Catalyzed by Platinum Nanoparticles [J]. J. Phys. Chem. B 2004,108 (18):5726-5733.
    [10]Narayanan, R.; El-Sayed, M. A.. Changing Catalytic Activity during Colloidal Platinum Nanocatalysis Due to Shape Changes:Electron-Transfer Reaction [J]. J. Am. Chem. Soc.2004,126 (23):7194-7195.
    [11]Jena, B. K.; Raj, C. R.. Synthesis of Flower-like Gold Nanoparticles and Their Electrocatalytic Activity Towards the Oxidation of Methanol and the Reduction of Oxygen [J]. Langmuir 2007,23 (7):4064-4070.
    [12]Sun, S. H.; Yang, D. Q.; Villers, D.; Zhang, G X.; Sacher, E.; Dodelet, J-P.. Template-and Surfactant-free Room Temperature Synthesis of Self-Assembled 3D Pt Nanoflowers from Single-Crystal Nanowires [J]. Adv. Mater.2008,20 (3):571-574.
    [13]Yin, Z.; Zheng, H. J.; Ma, D.; Bao, X. H.. Porous Palladium Nanoflowers that Have Enhanced Methanol Electro-Oxidation Activity [J]. J. Phys. Chem. C 2009,113 (3):1001-1005.
    [14]Dong, B.; Li, N.; Zheng, L. Q.; Yu, L.; Inoue, T.. Surface Adsorption and Micelle Formation of Surface Active Ionic Liquids in Aqueous Solution [J]. Langmuir 2007, 23 (8):4178-4182.
    [15]Zhou, Y.; Antonietti, M.. A novel tailored bimodal porous silica with well-defined inverse opal microstructure and super-microporous lamellar nanostructure [J]. Chem. Commun.2003, (20):2564-2565.
    [16]Zhou, Y.; Antonietti, M.. Preparation of Highly Ordered Monolithic Super-Microporous Lamellar Silica with a Room-Temperature Ionic Liquid as Template via the Nanocasting Technique [J].Adv. Mater.2003,15 (17):1452-1455.
    [17]Wang, T. W.; Kaper, H.; Antonietti, M.; Smarsly, B.. Templating Behavior of a Long-Chain Ionic Liquid in the Hydrothermal Synthesis of Mesoporous Silica [J]. Langmuir 2007,23 (3):1489-1495.
    [18]Dupont, J.; Consorti, C. S.; Suarez, P. A. Z.; de Souza, R. F.; Fulmer, S. L.; Richardson, D. P.; Smith, T. E.; Wolff, S.. Preparation of 1-butyl-3-methyl imidazolium-based room-temperature ionic liquids [J]. Org. Synth.2002,79 (3): 236-241.
    [19]Wu, C. Z.; Xie, Y; Lei, L. Y; Hu, S. Q.; OuYang, C. Z.. Synthesis of New-Phased VOOH Hollow "Dandelions" and Their Application in Lithium-Ion Batteries [J].Adv. Mater.2006,18 (13):1727-1732.
    [20]Veisz, B.; Kiraly, Z.. Size-Selective Synthesis of Cubooctahedral Palladium Particles Mediated by Metallomicelles [J]. Langmuir 2003,19 (11):4817-4824.
    [21]Zhou, Y.; Schattka, J. H.; Antonietti, M.. Room-Temperature Ionic Liquids as Template to Monolithic Mesoporous Silica with Wormlike Pores via a Sol-Gel Nanocasting Technique [J]. Nano Lett.2004,4 (3):477-481.
    [22]Chen, H. J.; Dong, S. J.. Self-Assembly of Ionic Liquids-Stabilized Pt Nanoparticles into Two-Dimensional Patterned Nanostructures at the Air-Water Interface [J]. Langmuir 2007,23 (25):12503-12507.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700