用户名: 密码: 验证码:
基于多类运动感知脑电的异步脑—机接口的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑-机接口(brain-computer interface, BCI)是一种不依赖于大脑外周神经与肌肉正常输出通道的通讯控制系统,是在大脑与外部设备之间建立的直接交流通道。基于脑电的BCI技术是脑神经科学,认知科学,康复工程,现代信息学与计算机科学等学科共同发展的产物,实现了人脑意识信息与计算机等电子设备间的交换,对进一步研究人的思维机理,帮助有行为障碍的人康复都具有十分重要的作用。对脑-机接口的研究具有非常重要的科学意义、学术价值和广阔的应用前景,是当今世界研究的热点。
     基于想象运动的脑电信号(electroencephalogram, EEG)不需要结构化的物理环境,是一种被广泛采用的思维作业方式。脑-机接口技术从实验室研究走向实际应用的关键在于对运动想象脑电信号的识别精度和识别速度问题。本文在总结前人工作的基础上,对脑电信号的采集、处理等问题进行研究。主要包括以下几个方面:
     第一、进行系统信号采集模块设计。在实验室已有的脑电采集设备和信号采集软件基础上,根据本人的课题研究,设计相应的大脑想象运动任务实验。根据要求,使用VC++6.0编写出相应的脑电信号采集软件。
     第二、对采集的脑电信号进行预处理。由于脑电信号非常微弱,在采集过程中容易受到各种噪声干扰的影响,对脑电信号必须进行去噪处理。本文主要通过小波变化、数字滤波等方法对采集到的信号进行处理,把信号中的无用成分包括心电、眼电、肌电等伪迹去除掉,提取其中的有效信息为后面的处理做准备。
     第三、对脑电信号进行特征提取。特征提取的目的是将从预处理后获得的EEG信号变换为能代表不同意识任务的特征向量。能否提取出大脑思维活动中的有效特征信息是BCI研究的关键所在,是正确识别不同思维意识模式的基础。本文主要讨论自适应回归(Adaptive Autoregressive,AAR)模型、独立分量分析(Independent Component Analysis, ICA)、共用空间模式(Common Spatial Pattern,CSP)几种典型的特征提取方法,并进行比较。
     第四、对脑电特征进行分类识别。采用何种分类设计是BCI系统中另一十分重要的任务,直接影响到BCI系统的性能。本文主要对Fisher线性判别法、神经网络、支持向量机(Support Vector Machine, SVM)几种分类方法进行探讨。
Brain-computer interface is a direct communication channel which is established between the cerebrum and external devices, and is a communication control system that is not dependent on normal output channels made up of cerebral ganglion and muscle. EEG-based BCI technology is a discipline which is formed by brain science, cognitive science, rehabilitation engineering, modern information science and computer science.It achieves an exchange between the human brain information and computer or other electronic equipments. It can provide a new way of communication and control for paralysis patients, especially who lost the basic physical movements but thinking. So, it is being received increasing attention, and it also has more important scientific significance and academic value.
     EEG-based Imagine movement is a widely used way of thinking operations which does not require structured physical environment. EEG recognition accuracy and recognition speed of the motor imagery is the key to successful application of Brain computer interface technology. This paper summarized the basis of previous work, researched the acquisition and processing of the EEG signals.
     First, design the signal acquisition module for system. The paper designs imaginary-movement-task experiments. It compiles EEG acquisition software by using VC ++6.0.
     Second, pretreat EEG acquisition. As the EEG signal is very weak, it must be carried out on EEG denoising in the collection process. For example, we used the wavelet transform, digital filtering method to collecte signals.
     Third, EEG feature extraction. The purpose of feature extraction is to transform the obtained pretreatment EEG signal into different feature vector. Weather can we extract effective information in the brain activity of thinking characteristic,is the key to BCI research and the key to identify the correct sense of the basis for the different ways of thinking. This paper discusses and compares the Adaptive Autoregressive (AAR) model, Independent Component Analysis(ICA), Common Spatial Pattern(CSP) and several typical feature extraction method.
     Fourth, EEG classification. Classification for EEG designs is directly affecting the performance of BCI system. This article probes some classification methods, such as the Fisher linear discriminance, Neural networks, Support Vector Machine(SVM), and so on.
引文
[1]Haselsteiner E and Pfurtscheller G, Using time-dependant neural networks for EEG classification, IEEE Trans. Rehabil. Eng,2000, (8):457~463.
    [2]Obermeier B, Guger C, Neuper C and Pfurtscheller G, Hidden Markov models for online classification of single trial, EEG Pattern Recognit. Lett,2001, (1):299~309.
    [3]Lee H and Choi S, PCA+HMM+SVM for EEG pattern classification, Proc.7th Int. Symp. on Signal Processing and its Applications,2003.
    [4]Garcia G N, Ebrahimi T and Vesin J-M, Support vector EEG classification in the Fourier and time-frequency correlation domains, Conference Proc.1st Int. IEEE EMBS Conf. on Neural Engineering,2003.
    [5]Boostani R and Moradi M H, A new approach in the BCI research based on fractal dimension as feature and Adaboost as classifier, J. Neural Eng.,2004, (1):212~217.
    [6]Solhjoo S and Moradi M H, Mental task recognition:a comparison between some of classification methods, BIOSIGNAL 2004 Int. EURASIP Conference,2004.
    [7]Lemm S, Schafer C and Curio G, BCI competition 2003-data set III:probabilistic modeling of sensorimotor mu rhythms for classification of imaginary hand movements, IEEE Trans. Biomed. Eng.2004,(51):1077~1080.
    [8]Solhjoo S, Nasrabadi A M and Golpayegani M R H, Classification of chaotic signals using HMM classifiers:EEG-based mental task classification, Proc. European Signal Processing Conference,2005.
    [9]Tavakolian K, Vasefi F, Naziripour K and Rezaei S, Mental task classification for brain computer interface applications Proc. Canadian Student Conf. on Biomedical Computing,2006.
    [10]Cincotti F, Scipione A, Tiniperi A, Mattia D, Marciani M G, Millan J del R, Salinari S, Bianchi L and Babiloni F, Comparison of different feature classifiers for brain computer interfaces, Proc.1st Int. IEEE EMBS Conf. on Neural Engineering,2003.
    [11]Townsend G, Graimann B, Pfurtscheller G, Continuous EEG classification during motor imagery-simulation of an asynchronous BCI, IEEE Trans Neural Syst Rehabil Eng,12(2): 258~265.
    [12]Tsui Chun Sing Louis, Gan John Q, Asyncronous BCI control of a robot simulator with supervised online training, IDEAL,2007:125~134.
    [13]Kalcher J, Flotzinger D, Neuper C, Golly S and Pfurtscheller G, Graz brain-computer interface Ⅱ:towards communication between humans and computers based on online classification of three different EEG patterns, Med. Biol. Eng.Comput,1996,(34):383~88.
    [14]Obermaier B, Neuper C, Guger C and Pfurtscheller G, Information transfer rate in a five-classes brain-computer interface, IEEE Trans. Neural Syst. Rehabil.Eng.,2000,(9):283~ 288.
    [15]Yijun Wang, Bo Hong, Xiaorong Gao, and Shangkai Gao, Implementation of a Brain-Computer Interface Based on Three States of Motor Imagery, Proceedings of the 29th Annual International, Conference of the IEEE EMBS,2007.
    [16]Alois Schlogl, Felix Lee, Horst Bischof and Gert Pfurtscheller, Characterization of four-class motor imagery EEG data for the BCI-competition 2005,J. Neural Eng.,2005, (2):L14-L22.
    [17]Naeem, M., Brunner, C., Leeb, R., Graimann, B., Pfurtscheller, G., Separability of four-class motor imagery data using independent components analysis, J. Neural Eng.,2006, (3):208~216.
    [18]Pfurtscheller G., Brunner, C., Schlogl, A., Lopes da Silva, F.H., Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage,2006,(31),153-159.
    [19]Clemens Brunner, Muhammad Naeem, Robert Leeb, Bernhard Graimann, Spatial filtering and selection of optimized components in four class motor imagery EEG data using independent components analysis, Pattern Recognition Letters,28,2007:957~964.
    [20]Valerie Morash, Ou Bai, Stephen Furlani, Peter Lin,Classifying EEG signals preceding right hand, left hand, tongue, and right foot movements and motor imageries, Clinical Neurophysiology,2008, (119):2570-2578.
    [21]Bai Ou, Lin Peter et al, A high performance sensorimotor Beta rhythm-based brain-computer interface associated with human natural motor behavior, Journal of Neural Engineering,2008:24~35.
    [22]lou Bin, Hong Bo, Gao Xiaorong, Gao Shangkai, Bipolar electrode selection for a motor imagery based brain-computer interface, Journal of Neural Engineering,2008, (5):342~ 349.
    [23]Tsui Chun Sing Louis, Gan John Q, Stephen J. Roberts, A self-paced brain-computer interface for controlling a robot simulator:an online event labelling paradigm and an extended Kalman filter based algorithm for online training, Med Biol Eng Comput,2009, (47):257-265.
    [24]G. Pfurtscheller, C. Neuper, C. Guger, W. Harkam, H. Ramoser, A.Schlogl, B. Obermaier, and M. Pregenzer, Current trends in graz brain-computer-interface (BCI) research, IEEE Trans. Rehab. Eng.,2000, (8):216-219.
    [25]F Lotte, M Congedo, A Lecuyer, F Lamarche and B Arnaldi, A review of classification algorithms for EEG-based brain-computer interfaces, Journal of Neural Engineering,2007,4, R1-R13.
    [26]Bashashati A, Fatourechi M, Ward RK and Birch GE, Topical Review:A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals, Journal of Neural Engineering,2007,4, R32~R57.
    [27]黄秉宪.脑的高级功能与神经网络[M].北京:科学出版社,2000,1,73~77.
    [28]蔡建新,张唯真.生物医学电子学[M].北京:北京大学出版社,1997,12~16.
    [29]杨福生.生物医学信号处理[M].北京:高等教育出版社,1989,533-565.
    [30]刘小石,郑淮,马林伟,杨帆.精通Visual C++6.0[M].北京:清华大学出版社,2001,1~56.
    [31]李坤.运动意识脑电分类及基于VC++的脑-机接口实验系统[硕士学位论文].安徽:安徽大学,2007.
    [32]孙虹,朱海川,吴婷.基于自发脑电的脑机接口实验研究与设计[J].测控技术.2008,27(7):69~71.
    [33]杨冬青,唐世渭,徐其钧.数据库系统实现[M].北京:机械工业出版社,2001.
    [34]Abraham Silberschatz, Henry F. Korth, S.Sudarsham.数据系统概念[M].机械工业出版社.1999:1~14.
    [35]罗建,崔亮,卫娜,张治钢.脑电信号采集与处理系统的研制[J].医疗卫生设备.2000,(6):20~22.
    [36]黄翠玲,陈新.脑电信号采集与管理系统的设计与实现[J].计算机与数字工程.2008,36(9):58~109.
    [37]赵丽,刘自满,崔世钢,徐雪莲.基于脑-机接口技术的智能服务机器人控制系统[J].天津工程师范学院学报.2008,18(2):1~4.
    [38]杨帮华,颜国正,丁国清,于莲芝.脑-机接口关键技术研究[J].北京生物医学工程.2005,24(4):308~315.
    [39]伍亚舟,何庆华,黄华,张玲,卓豫,谢奇,吴宝明.基于想象左右手运动脑-机接口实验及分析[J].生物医学工程学杂志.2008.25(5):983~988.
    [40]秦吉,张翼鹏.现代统计信息分析在安全工程方面的应用——卡尔曼滤波器基本知识[J].工业安全与防尘.1999,4,45~48.
    [41]杨立才,李金亮,姚玉翠,李光林.基于小波分解和支持向量机的P300识别算法[J].中国生物医学工程学报.2007,26(6):804~809.
    [42]张海军,张文庆.基于小波包技术的脑电特征波提取分析[J].机电工程技术.2008,37(7):19~43.
    [43]任亚莉.基于小波包熵的运动意识任务分类研究[J].生物物理学报.2008,24(3):227~231.
    [44]吴婷,颜国正,杨帮华.一种快速的脑电波特征提取与分类方法[J].系统仿真学报.2007,19(18):4342~4333.
    [45]程龙龙,明东,刘双迟,朱誉环,周仲兴,万柏坤.脑-机接口研究中想象动作电位的特征提取与分类算法[J].仪器仪表学报.2008,29(8):1772~1778.
    [46]葛瑜,杨钢.脑-机接口系统EEG信号特征提取与分类[J].微计算机信息.2008,24(63):266~268.
    [47]王璐,吴小培,高湘萍.四类运动想象任务的脑电特征分析及分类[J].计算机技术与发展.2008,18(10):23~26.
    [48]吴小培.独立分量分析及其在脑电信号处理中的应用[D].博士学位论文.安徽:中国科学技术大学,2002.
    [49]吴小培,张道信.基于多维统计分析方法的脑电消噪阴.安徽大学学报,2002,26(4):69—75.
    [50]杨福生,洪波,唐庆玉.独立分量分析及其在生物医学工程中的应用[J].“国外医学”生物医学工程手册,2000,23(3): 129-134.
    [51]李明爱,刘净瑜,郝冬梅,基于改进CSP算法的运动想象脑电信号识别方法[J].中国生物医学工程学报.2009,28(2).
    [52]马登程.脑-机接口中关于手指运动识别的研究[J].科技信息.2008,(5)
    [53]毕路拯,张然,高原,吴平东[J].基于认知任务的脑-机接口方法研究[J].计算机工 程.2007,33(1):190~192.
    [54]杨行俊,郑君里.人工神经网络[M].高等教育出版社.1992.
    [55]焦李成.神经网络系统理论[M].西安电子科大出版社.1992.
    [56]杜树新,吴铁军.模式识别中的支持向量机方法[J].浙江大学学报(工学版)37(5):521~527.
    [57]伍亚舟,张玲,易东,吴宝明.基于支持向量机的思维脑电信号特征分类研究[J].计算机工程与应用.2008,44(36):201~205.
    [58]王旭,周南.一种基于SVM的BCI系统的设计与研究[J].农业网络信息.2008,(11):48~55.
    [59]王新光,邹凌,段锁林,周仁来,脑-机接口技术的研究与进展[J].中国组织工程研究与临床康复.2008,12(39):7722~7724.
    [60]高上凯.浅谈脑-机接口的发展现状与挑战[J].中国生物医学工程学报.2007,26(6):801~809.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700