用户名: 密码: 验证码:
基于局部竞争机制的图像稀疏表示方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
寻求客观事物的“稀疏”表示方法一直是机器视觉、数据压缩等领域专家学者致力于研究的目标。由于图像稀疏表示的优良特性,目前针对图像的稀疏表示已经发展了多种算法。图像的稀疏表示也已经成功应用于图像的压缩、去噪、识别等。由于图像的稀疏表示在图像处理中的成功应用,已经引起越来越多研究人员的重视,形成对图像稀疏分解研究的热潮。
     对于分段光滑信号,小波提供了一种非常简单而有效的表示方法,然而传统意义上的小波变换在高维情况下并不是最优的或者说是“最稀疏”的函数表示方法。过完备多分辨率变换能够充分利用函数本身信息,对特定的函数类达到最优逼近。不同的变换各自适合表示不同的图像特征,这给图像稀疏表示提供了更有力的理论和方法。此外,生物视觉系统的发展和进化与其感知的外界环境(自然图像)密切相关。实验表明,自然图像的非高斯统计特性与神经元的稀疏编码方式相对应。
     首先,本文提出利用过完备多分辨率变换并结合视觉特性的图像稀疏表示方法。该算法用双树复数小波模拟视觉皮层简单细胞的感受野,结合相邻细胞间抑制和增强特性,用局部竞争抑制的方法从变换系数中选取少量系数稀疏表示图像。实验结果表明,其重构图像的效果较其它方法有明显的改善。
     其次,本文根据Marr初视觉理论,在一种能够从多尺度描述一幅图像的一种新的复数小波——Marr-like小波金字塔以及一种新的适应性Harr小波变换——Tetrolet变换的基础上,提出将Marr-like小波金字塔分解与Tetrolet相结合的图像稀疏表示方法。数值实验表明该算法能够更好的匹配图像的几何特征,具有更好的可控性和图像重构效果。
In the fields of machine vision and data compression, seeking for the“sparse”representation of the objective things has been the domain to which the experts and scholars devoted. Nowadays, due to the excellent characteristics of image sparse representation, numerous algorithms have been developed. As a result of the successful application of sparse representation of images in image compression, denoising, recognition, etc. an increasing number of researchers begin to attach importance to this field and form a new upsurge.
     For a piecewise smooth signal, wavelet provides a very simple and effective method. However, in high-dimension circumstances, conventional wavelet transform is not the optimal or the“most sparse”representation of functions. Overcomplete multiresolution transform could take full advantage of the information, which is contained in the function itself, and achieve the optimal approximation to the specific functions. Different transforms are appropriate for describing diversified characteristics of images, which provide powerful theories and methods for sparse representation of images. In addition, the development and evolution of biological visual system is closely related to the perceived external environment (natural images). Experiments have indicated that non-gaussian statistical properties of natural images have some correspondence with the sparse coding methods of neurons.
     Firstly, a sparse representation scheme of images which is inspired from overcomplete multiresolution transforms combined with visual characteristic, is proposed. The algorithm models simple cell receptive fields through Dual-Tree Complex Wavelets. The model also incorporates inhibition and facilitation interactions between neighboring cells to choose a number of coefficients of transformation to achieve the sparse representation of initial images by utilizing the local competition and inhibition method. The experiment results show that the proposed scheme outperforms others.
     Secondly, according to Marr’s theory of preliminary vision, based on a new kind of complex wavelet—Marr-like wavelet, which could describe an image from multiscales, and a novel adaptive Harr-type wavelet transform—Tetrolet, we propose a new method for sparse representation of images which combines the two methods mentioned above. Numerical results show this method is capable of matching the geometrical characteristics of images and has better steerability as well as reconstruction result.
引文
1王建英,尹忠科,张春梅.信号与图像的稀疏分解及初步应用.成都:西南交通大学出版社, 2006:152-160
    2 M. Elad, M. A. T. Figueiredo, Y. Ma. On the Role of Sparse and Redundant Representations in Image Processing. Proceedings of IEEE, 2010,(99):1-11
    3 S. Samadi, M. Cetin, M. Shirazi. Sparse Signal Representation for Complex-Valued Imaging. Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, 2009:365-370
    4 B. Olshausen, D. Field. Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for Natural Images. Nature, 1996,381(6583):607-609
    5焦李成,侯彪,王爽,等.图像多尺度几何分析理论与应用.西安:西安电子科技大学出版社, 2008:3-22
    6 E. J. Candes, D. L. Donoho. New Tight Frames of Curvelets and Optimal Representations of Objects with Piecewise C 2 Singularities. Communications on Pure and Applied Mathematics, 2004,57(2):219-266
    7 M. N. Do, M. Vetterli. The Contourlet Transform: an Efficient Directional Multiresolution Image Representation. IEEE Transactions on Image Processing, 2005,14(12):2091-2106
    8 E. Le Pennec, S. Mallat. Sparse Geometric Image Representations with Bandelets. IEEE Transactions on Image Processing, 2005,14(4):423-438
    9 Y. Tomokusa, M. Nakashizuka, Y. Iiguni. Sparse Image Representation with Shift and Rotation Invariance Constraints. Intelligent Signal Processing and Communication Systems, 2009:256-259
    10 S. Mallat, Z. Zhang. Matching Pursuits with Time-frequency Dictionaries. IEEE Transactions on Signal Processing, 1993,41(12):3397-3415
    11 F. Bergeau, S. Mallat. Matching Pursuit of Images. Proceedings of IEEE InternationalConference on Image Processing, 1995,1:53-56
    12 R. Coifman, M. Wickerhauser. Entropy-Based Algorithms for Best Basis Selection. IEEE Transactions on Information Theory, 1992,38(2):713-718
    13 B. Olshausen, D. Field. Learning Efficient Linear Codes for Natural Images: the Roles of Sparseness, Overcompleteness, and Statistical Independence. Proceedings of SPIE, 1996,2657:132-138
    14 M. Nakashizuka, H. Nishiura, Y. Iiguni. Sparse Image Representations with Shift-Invariant Tree-Structured Dictionaries. IEEE International Conference on Image Processing, 2009:2145-2148
    15 P. Vandergheynst, P. Frossard. Efficient Image Representation by Anistropic Refinement in Matching Pursuit. Proceedings of IEEE on ICASSP, 2001, 5(3):1757-1760
    16 R. Gribonval, M. Nielsen. Sparse Decompositions in‘Incoherent’Dictionaries. Proceedings of IEEE ICIP, 2003:33-36
    17 S. Chen, D. Donoho, M. Sauners. Atomic Decomposition by Basis Pursuit. SIAM REVIEW, 2001,43(1):129-159
    18 I. Daubechies. Time-frequency Localization Operator: A Geometric Phase Space Approach. IEEE Transactions on Information Theory, 1988,34(4):605-612
    19 Y. C. Pati, R. Rezaiifar, P. S. Krishnaprasad. Orthogonal Matching Pursuits: Recursive Function Approximation with Applications to Wavelets Decomposition. Proceedings of the 27th Asilomar Conference in Signals, Systems and Computers, 1993,1:40-44
    20 V. Thang Pham, W. M.Arnold Smeulers. Sparse Representation for Coarse and Fine Object Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006,28(4):555-587
    21 P. Frossard, P. Vandergheynst, M. Kunt, et al. A Posteriori Quantization of Progressive Matching Pursuit Streams. IEEE Transactions on Signal Processing, 2004,52(2):525-535
    22 R. Neff, A. Zakhor. Very Low Bit-Rate Video Coding Based on Matching Pursuits.IEEE Transactions on Circuits and Systems for Video Technology, 1997,7(1):158-171
    23 M. R. I.V. Rosa, P. Vandergheynst, P. Frossard. Low-Rate and Flexible Image Coding with Redundant Representations. IEEE Transactions on Image Processing, 2006,15(3):726-741
    24 D. L. Donoho. Wedgelets: Nearly Minimax Estimation of Edges. The Annals of Statistics, 1999,27(3):859-897
    25 V. Velisavljevic, B. Beferull-Lozano, M. Vetterli, et al. Directionlets: Anisotropic Multi-Directional Representation with Separable Filtering. IEEE Transactions on Image Processing, 2006,17(7):1916-1933
    26 K. Guo, D. Labate. Optimally Sparse Multidimensional Representation Using Shearlets. SIAM Journal on Mathematical Analysis, 2007,39(1):298-318
    27 A. J. Bell, T. J. Sejnowksi. An Information-Maximization Approach to Blind Seperation and Blind Deconvolution. Neural Computation, 1995,7(6):1129-1159
    28 M. Lewicki, T. J. Sejnowksi. Learning Overcomplete Representation. Neural Computation, 2000,12(2):337-365
    29 M. Lewicki, B. A. Olshausen. Inferring Sparse, Overcomplete Image Codes Using an Efficient Coding Framework. In Proceedings of the 1997 Conference on Advances in Neural Information Processing Systems, 1997:815-821
    30 L. K. Jones. A Simple Lemma on Greedy Approximation in Hilbert Space and Convergence Rates for Projection Pursuit Regression and Neural Network Training. Annals of Statistics, 1992,20(1):608-613
    31 D. L. Donoho. Sparse Components of Images and Optimal Atomic Decomposition. Constructive Approximation, 2001,17(3):353-382
    32 J. Yang, A. Waibel. A Real-time Face Tracker. Proceedings of the 3rd IEEE Workshop on Applications of Computer Vision, 1996:142-147
    33 B. Moghaddam, W. Wahid, A. Pentland. Beyond Eigenfaces: Probabilistic Matching for Face Recognition. Proceedings of the 3rd IEEE International Conference on Automatic Face and Gesture Recognition, 1998:30-35
    34寿天德.视觉信息处理的脑机制.上海:上海教育出版社, 1997:139-158
    35 D. H. Hubel, T. N. Wiesel. Receptive Fields, Binocular Interaction and Functional Architecture in Cat’s Visual Cortex. The Journal of Physiology, 1962,160(1):106-154
    36罗四维.视觉感知系统信息处理理论.北京:电子工业出版社, 2006:11-15
    37 R. W. Rodieck, J. Stone. Analysis of Receptive Field of Cat Retina Ganglion Cells. Journal of Neurophysiology, 1965,28(5):833-849
    38 P. Kruizinga, N. Petkov. Nonlinear Operator for Oriented Texture. IEEE Transactions on Image Processing, 1999,8(10):1395-1407
    39 C. Grigorescu, N. Petkov, P. Kuizinga. Improved Contour Detection by Non-Classical Receptive Field Inhibition. Proceedings of the Second International Workshop on Biologically Motivated Computer Vision, 2002,(25):50-59
    40 J. G. Daugman. Complete Discrete 2-D Gabor Transforms by Neural Networks for Image Analysis and Compression. IEEE Transactions on Acoustics, Speech and Signal Processing, 1988,36(7):1169-1179
    41 T. S. Lee. Image Representation Using 2D Gabor wavelets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,10(18):959-971
    42 J. G. Daugman. Uncertainty Relation for Resolution in Space, Signal Frequency and Orientation Optimized by Two-Dimensional Visual Cortical Filters. Journal of the Optical Society of Ameica, 1985, 2(7):1160-1169
    43 V. de Weijer, Th. Gevers. Boosting Saliency in Color Image Features. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005,1:365-372
    44廖斌.基于匹配跟踪的低速率视频编码. [中国科学院研究生院博士学位论文], 2003:35-48
    45 N. G. Kingsbury. The Dual-tree Complex Wavelet Transform: A New Technique for Shift Invariance and Directional Filters. IEEE Digital Signal Processing Workshop, 1998: 86-89
    46 D. Van De Ville, M. Unser. Complex Wavelet Bases, Steerability, and the Marr-like Pyramid. IEEE Transactions on Image Processing, 2008,17(11):2603-2680
    47 J. Krommweh. Tetrolet Transform: A New Adaptive Haar Wavelet Algorithm forSparse Image Representation. Visual Communication and Image Representation, http://www.uni-due.de/mathematik/krommweh/, 2010
    48 N. G. Kingsbury, T. H. Reeves. Iterative Image Coding with Overcomplete Complex Wavelet Transforms. SPIE Visual Communications and Image Processing, 2003,5150: 1253-1264
    49 N. G. Kingsbury, T. H. Reeves. Redundant Representation with Complex Wavelets: How to Achieve Sparsity. Proceedings of IEEE Conference on Image Processing, 2003,1(24):45-48
    50 E. J. Candes. Monoscale Ridgelets: for the Representation of Images with Edges. Technical Report, Department of Statistics, Stanford University, 1998:13-15
    51 D. L. Donoho, A. G. Flesia. Can Recent Innovations in Harmonic Analysis‘Explain’Key Findings in Natural Image Statistics. Computation in Neural Systems, 2001,12(3):371-393
    52 D. L. Donoho. Orthonormal ridgelets and Linear Singularities. SIAM Journal on Mathematical Analysis, 2000,31(5):1062-1065
    53 C. J. Rozell, D. H. Johnson, R.G. Baraniuk, et al. Locally Competitive Algorithms for Sparse Approximation. IEEE International Conference on Image Processing, 2007,4:169-172
    54 C. J. Rozell, D. H. Johnson, R.G. Baraniuk, et al. Sparse Coding via Thresholding and Local Competition in Neural Circuits. Neural Computation, 2008,20(10):2526-2563
    55 A. Crossman, J. Morlet. Decomposition of Hardy Functions into Square Inerrable Wavelets of Constant Shape. SIAM Journal on Mathematical Analysis, 1984,15(4):723-736
    56 S. Mallat. Multiresolution Approximation and Wavelet Orthonormal Bases of L2(R). Transactions of the American Mathematical Socciety, 1989,315:69-88
    57 S. Mallat. A Theory for Multiresolution Signal Decomposition: the Wavelet Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989,11(7):674-693
    58 Y. Meyer. Wavelets: Algorithms and Applications. Society for Industrial and AppliedMathematics, 1994,36(3):526-528
    59 I. Daubechies. Orthonormal Bases of Compactly Supported Wavelets. Communica -tions on Pure and Applied Mathematics, 2006,41(7):909-996
    60 F. C. A. Fernandes. Directional, Shift-Insensitive, Complex Wavelet Transforms with Controllable Redundancy. Ph.D.Thesis, Rice University, 2002:2-38
    61 G. Strang. Wavelets and Dilation Equations: A Brief Introduction. Society for Industrial and Applied Mathematics, 1989,31(4):614-627
    62 P. L. Dragotti, M. Vetterli. Wavelet Footprints: Theory, Algorithms and Applications. IEEE Transactions on Signal Processing, 2003,51(5):1306-1323
    63 J. Romberg, M. Wakin, N. G. Kingsbury. A Hidden Markov Tree Model for the Complex Wavelet Transform. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 2000,1:133-136
    64 G. H. Granlund, H. Knutsson. Signal Processing for Computer Vision. Kluwer Academic Publishers. 1995:42-49
    65 D. Clonda, J. M. Lina, B. Goulard. Complex Daubechies Wavelets: Properties and Statistical Image Modelling. Signal Processing, 2004,84(1):1-23
    66 N. G. Kingsbury. Image Processing with Complex Wavelets. Philosophical Transactions of the Royal Society, 1999,357(1760):2543-2560
    67 N. G. Kingsbury. The Dual-Tree Complex Wavelet Transform: A New Efficient Tool for Image Restoration and Enhancement. In Proceedings of IEEE Conference on Image Processing, 1998:319–322
    68 J. Magarey, N. G. Kingsbury. Motion Estimation Using a Complex Valued Wavelet Transform. IEEE Transactions on Signal Processing, 1998,46(4):1069-1084
    69 N. G. Kingsbury. Complex Wavelets for Shift Invariant Analysis and Filtering of Signals. Applied and Computational Harmonic Analysis, 2002,10(3):234-253
    70 N. G. Kingsbury. A Dual-Tree Complex Wavelet Transform with Improved Orthogonality and Symmetry Properties. International Conference on Image Processing, 2000,2: 375-378
    71 I. W. Selesnick. The Design of Approximate Hillbert Transform Pairs of WaveletBases. IEEE Transactions on Signal Processing, 2002,50(5):1304-1314
    72王红霞.基于滤波器组的新型小波理论及其应用. [国防科技大学博士学位论文]. 2004,12:20-39
    73 S. Fischer, G. Cristobal, R. Redondo. Sparse Overcomplete Gabor Wavelet Representation Based on Local Competitions. IEEE Transactions on Image Processing, 2006,15(2): 265-272
    74 E. Doi, M. S. Lewicki. Relations between the Statistical Regularities of Natural Images and the Response Properties of the Early Visual System. Japanese Cognitive Science Society, SIG P&P, 2005:1-8
    75 S. Mallat. Geometrical Grouplets. Applied and Computatinal Harmonic Analysis, 2009,26(2):161-180
    76 C. L. Chang, B. Girod. Direction-Adaptive Discrete Wavelet Transform for Image Compression. IEEE Transactions on Image Processing, 2007,16(5):1289-1302
    77 D. Marr. Vision. San Francisco, Freeman Publishers, 1983:121-128
    78 D. Marr, E. Hildreth. Theory of Edge Detection. Proceedings of the Royal Society of London. Series B, Biological Sciences, 1980,207(1167):187-217
    79 A. P. Witkin. Scale-Space Filtering. In the 8th Intenatinal Joint Conference on Artifical Intelligence, 1983,2:1019-1022
    80 T. Lindeberg, J. O. Scale-Space Primal Sketch: Construction and Experiments. Image Vision Computation, 1992,10(1):3-18
    81 B. Logan. Information in the Zero-Crossings of Bandpass Signals. Bell System Technical Journal, 1977,56:487-510
    82 R. Hummel, R. Moniot. A Network Approach to Reconstruction from Zero-Crossings. In IEEE Workshop Computer Vision, 1987:8-13
    83 S. Mallat. Zero-Crossings of a Wavelet Transform. IEEE Transactions on Information Theory, 1991,37(4):1019-1033
    84 S. Mallat, S. Zhang. Characterization of Signals from Multicale Edges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14(7):710-732
    85 Z. Berman. The Uniqueness Question of Discrete Wavelet Maxima Representation.Institute for Systems Research Technical Reports, 1991:48-53
    86 M. Unser, D. Van De Ville. The Pairing of a Wavelet Basis with a Mildly Redundant Analysis via Subband Regression. IEEE Transactions on Image Processing, 2008,17(9):2040-2052
    87 S. W. Golomb. Polyominoes: Puzzles, Patterns, Problems and Packings. Princeton University Press, 1994:85-110
    88 E. Demanine, S. Hohenberger, D. Liben-Nowell. Tetris Is Hard, Even to Approximate. International Journal of Computational Geometry and Applications, 2004,14:41-68
    89 R. Breukelaar, H. Hoogeboom, W. Kosters. Tetris Is Hard, Made Easy. Technical Report, Leiden Institute of Advanced Computer Science, 2003:1-9
    90 M. Korn. Geometric and Algebraic Properties of Polyomino Tilings. Ph.D. Thesis, Massachusetts Institute of Technology, 2004:17-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700