用户名: 密码: 验证码:
头孢妥仑跨膜转运吸收机制的体内外研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:头孢妥仑( cefditoren, CDTR)是前体药物头孢妥仑匹酯(CDTR-PI)经口服吸收在肠壁酯酶的作用下水解生成,从而发挥抗菌作用。本实验主要研究大鼠体内CDTR的主要排泄途径以及体内体外实验研究其跨膜转运吸收及其机制,从而考察CDTR是否为PEPTs的底物。
     方法:采用高效液相色谱法(HPLC)测定血浆、尿液、胆汁、Krebs-Ringer缓冲液(KRB)、细胞裂解液样品中CDTR的药物浓度。流动相为1‰醋酸胺:甲醇(67:33),内标为4-二甲氨基安替比林,流速为1mL/min,UV检测波长295nm。体内实验中,麻醉大鼠分别行胆管插管和膀胱插管手术,颈静脉给药,分别于各时间点收集胆汁和尿液,经处理后HPLC测定CDTR药物浓度,计算胆汁中和尿液中经时累积药物排泄量。大鼠静脉同时给予PEPTs抑制剂甘氨酰肌氨酸(glycylsarcosine,Gly-Sar)测定其对大鼠体内CDTR排泄的影响。应用大鼠空肠灌流模型,考察Gly-Sar以及 2受体激动剂可乐定(clonidine)在该模型中对CDTR经肠道转运吸收入血的影响。制备大鼠翻转肠样品,测定离体肠管对药物浓度依赖性摄取以及Gly-Sar对离体肠管摄取CDTR的影响。将于24孔板培养15天的Caco-2细胞用于药物摄取实验,分别考察pH值、时间、温度、浓度以及Gly-Sar对CDTR在该模型中摄取的影响。
     结果:HPLC方法学验证表明血浆、胆汁、尿液、KRB缓冲液、细胞裂解液样品中干扰峰对CDTR峰无干扰,CDTR保留时间为21.2min,内标保留时间为22.0min,二者分离良好。稳定性实验测得CDTR在HBSS和KRB缓冲液中37℃放置至少60min内稳定。大鼠静脉给予0.5mg/kg的CDTR,6小时内大约34%给药量的CDTR经胆汁排泄,约4%给药量的CDTR经尿液排泄。当静脉同时给予CDTR和Gly-Sar,与单独给予CDTR相比,胆汁中CDTR累积排泄量无显著性差异,但是尿液中药物累积排泄量则明显增加从3.64%增加到10.28% ,肾脏清除率从1.34mL/min增加到4.16mL/min。在大鼠空肠灌流实验中,50mM Gly-Sar竞争性的抑制了0.1 mM CDTR经小肠的转运吸收。灌流15min,30 min,60 min后,加入Gly-Sar组的门脉血浆药物浓度(0.19μg/mL,0.28μg/mL,0.46μg/mL)与对照组(0.52μg/mL,0.98μg/mL,1.56μg/mL)相比显著性降低。当于灌流前15min静脉推注400μg/kg的可乐定,可以显著的增加1mM CDTR经空肠灌流模型转运入血的量,从而提高门脉的血浆药物浓度,灌流60min的门脉血药浓度与对照组相比,从1.03μg/mL增加到1.50μg/mL。当于灌流液中同时加入50mM Gly-Sar后,可抵消可乐定诱导的CDTR在空肠灌流模型中转运吸收增加的作用。在外翻肠囊模型实验中,CDTR的浓度依赖性摄取存在饱和现象,当CDTR的浓度达到5mM时浆膜侧药物浓度达到饱和(28.93nmoL/mL)。与空肠灌流实验相似,200mM Gly-Sar显著抑制了CDTR在翻转肠模型中的摄取。在Caco-2细胞模型摄取实验中,Caco-2细胞对CDTR的摄取在60min内随摄取时间推移近似线性增加,60min内未见摄取饱和现象,Gly-Sar显著的抑制各时间点Caco-2细胞对CDTR的摄取。浓度依赖性特异性摄取部分是一条饱和曲线,计算Km=1.095mM, Vmax=1.115nmol/mg protein/30min。4°C条件下CDTR的摄取与37°C条件下的摄取相比显著降低。另外pH值也显著的影响Caco-2细胞对CDTR的摄取,在pH=6.0摄取量最大,在pH=8.5时摄取量最小。
     结论:CDTR主要经过胆汁排泄,少量经肾脏排泄,静脉给药6小时内约40%给药剂量的药物经胆汁及肾脏排泄。体内实验以及大鼠空肠灌流模型,外翻肠囊模型,Caco-2细胞模型实验中,PEPTs的特异性抑制剂Gly-Sar以及PEPTs的调节剂可乐定显著的影响CDTR经肠道的转运吸收以及肾脏的排泄,因此CDTR是H+协同肽转运蛋白PEPTs的底物之一。
Objective: H+/oligopeptide cotransporter PEPT1, mainly located at the brush border membrane of intestinal epithelium cell, transport dipeptide/ tripeptide which is the degradation products of protein in digestive tract. Peptide-like drugs such asβ-lactam antibiotics,angiotensin-converting enzyme inhibitor (ACEI) and non-peptide drugs valaciclovir also can be transported via PEPT1. PEPT1 is important for maintaining the homeostasis and the absorption of drugs in gastrointestinal tract. In this study, the effects of glycylsarcosine and clonidine on uptake and transepithelial transport of cefditoren were investigated in vivo and in vitro, to clarify whether cefditoren is a potential substract of PEPT1/ PEPT2.
     Methods: Rats were administered cefditoren(10mg/kg) by intravenous administration, in the absence and presence of glycylsarcosine. Serial urine and bile samples were obtained in the period of 60 minuts. The effects of Gly-Sar and clonidine on transport activities was measured by everted small intestinal preparations or in situ intestinal loop technique. Uptake of cefditoren in Caco-2 cells was examined with or without Gly-Sar. Effects of pH and temperature on CDTR transport was also examined in Caco-2 cells. The concentration of cefditoren was determined by HPLC.
     Results: In vivo Gly-Sar coadministration increased the renal clearance of cefditoren by 200% as compared to cefditoren alone. The intestinal cefditoren absorption rate was decreased when Gly-Sar was dissolved in the perfusate at a concentration of 50mM. Before intrajejunal perfusion , intravenous infusing clonidine(400μg/kg) induced a 50% increase of cefditoren absorption across the intestinal mucosa. Saturable intestinal uptake of cefditoren was found using the everted jejunum of rats. The competitively inhibitive effect of Gly-Sar(200mM) on transport of cefditoren was consistant with that of in situ intrajujunal perfusion. Uptake of cefditoren was decreased by Gly-Sar in caco-2 cells as compared to cefditoren alone. pH and temperature significantly influence cefditoren uptake in Caco-2 cells, Km=1.095mM、Vmax=1.115nmol/mg protein/30min. The maximal uptake of cefditoren was found at pH= 6.0.
     Conclusion: This study provides the first evidence, under in vivo and in vitro conditions, that Gly-Sar and clonidine affect the transepithelial transport of cefditoren. The results demonstrate that cefditoren is the potential substract of the H+/oligopeptide cotransporter PEPTs.
引文
1. Balbisi EA, et al. a new aminothiacolyl cephalosporin. Pharmacotherapy 2002 Oct; 22 (10):1278-93.
    2. Linde M, et al. Comparison of Agar Dilution, Microdilution, E-Test, and Disk Diffusion Methods for Testing activity of Cefditoren against Streptococcus pneumoniae. Journal of clinical microbiology 1999,Oct. 37 (10): 3296–3299.
    3. Adibi SA.Renal assimilation of oligopeptide:physiological mechanisms and metabolic importance. Am J Physiol,1997,272:E723~736.
    4. Lu H, Klaassen C. Tissue distribution and thyroid hormone regulation of Pept1 and Pept2 mRNA in rodents.Peptides,2006, 27:850-857.
    5. Nduati V, Yan Y, Dalmasso G, et al. Leptin Transcriptionally Enhances Peptide Transporter (hPepT1) Expression and Activity via the CREB and Cdx2 Transcription Factors.J Biol Chem,2007,282(2):1359-73.
    6. Kexin L, Yukio K, Kaku TI, et al, Hydroxyprolylserine derivatives JBP923 and JBP485 exhibit the antihepatitis activities after gastrointestinal absorption in rats. J Pharmacol Exp Ther, 2000, 294(2):510-5.
    7. Thwaites DT, Kennedy DJ , Raldua D, et al. H+/dipeptide absorption across the human intestinal epithelium is controlled indirectly via a functional Na+/H+ exchanger. Gastroenterology,2002,122: 1322–1333.
    8. Berlioz F, Julien S, Tsocas A, et al. Neural modulation of cephalexin intestinal absorption through the di- and tripeptide brush border transporter of rat jejunum in vivo.J Pharmacol Exp Ther.1999,288:1037-44.
    9. Cornaire G,Woodley J F , Saivin S , et al . Effect of polyoxyl 35castor oil and polysorbate 80 on the intestinal absorption of digoxin i n vitro[J]. Arz neimittelf orsch ,2000 ,50 :576.
    10. Lennernas H ,Ahrenstedt O , Hallgren R , et al . Reginal jejunal perfusion ,a new in vivo approach to study oral drug absorption in man[J]. Pharm Res ,1992 ,9 :1243.
    11. Pang KS ,Cherry WF ,Ulm EH. Disposition of enalapril in the perfused rat intestine-liver preparation:absorption , metabolism and first2pass effect [J]. J Pharmacol Exp Ther , 1985 ,233 :788.
    12. Hirayama H , Xu X , Pang KS. Viability of the vascularly perfused , recirculating rat intestine and intestine2liver preparation [J]. Am J Physiol ,1989 ,257 (2 Pt 1) : G249.
    13. Lo YL , Huang JD. Effects of sodium deoxycholate and sodium caprate on the transport of epirubicin in human intestinal epithelial Caco-2 cell layers and everted gut sacs of rats [J ] .Biochem Pharmacol ,2000 ,59 :665.
    14. Gan LL , Dhiren RT. Applications of the Caco22 model in the design and development of orally active drugs : elucidation of biochemical and physical barriers posed by the intestinal epithelium[J ] . Adv Drug Deliv Rev , 1997 ,23 (1) :77.
    15. Lafforgue G, Arellano C, Vachoux C, Woodley J, et al. Oral absorption of ampicillin: role of paracellular route vs. PepT1 transporter. Fundam Clin Pharmacol. 2008 Apr;22(2):189-201.
    16. Bente Steffansena, Eve-Irene Lepista, Mitchell E. Taubc, et, al. Stability, metabolism and transport of Asp(OBzl)-Ala-a model prodrug with affinity for the oligopeptide transporter. European Journal of Pharmaceutical Sciences , 1999, 8(1):67-73.
    17. Tanaka H, Miyamoto KI, Morita K, et al. Regulation of the PepT1 peptide transporter in the rat small intestine in response to 5-fluorouracil-induced injury. Gastroenterology, 1998,114: 714-723.
    18. Okamura M,Terada T, Katsura T, et al. Inhibitory effect of zinc on PEPT1-mediated transport of glycylsarcosine and beta-lactam antibiotics in human intestinal cell line Caco-2. Pharm Res.2003,20(9):1389-93.
    19. Berlioz F, Maoret JJ, Paris H, et al.α2-Adrenergic Receptors Stimulate Oligopeptide Transport in a Human Intestinal Cell Line. J Pharmacol Exp Ther , 2000,1294:466–472.
    1. Daniel H, Kottra G. The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. Pflugers Arch , 2004,447:610–8.
    2. Adibi SA.Renal assimilation of oligopeptide:physiological mechanisms and metabolic importance.Am J Physiol,1997,272:E723-736.
    3. Lu H, Klaassen C. Tissue distribution and thyroid hormone regulation of Pept1 and Pept2 mRNA in rodents.Peptides,2006, 27:850-857.
    4. Nduati V, Yan Y, Dalmasso G, et al. Leptin Transcriptionally Enhances Peptide Transporter (hPepT1) Expression and Activity via the CREB and Cdx2 Transcription Factors.J Biol Chem,2007,282(2):1359-73.
    5. Merlin D,Si-Tahar M, Sitaraman SV, et al. Colonic epithelial hPepT1 expression occurs in inflammatory bowel disease: transport of bacterial peptides influences expression of MHC class 1 molecules. Gastroenterology, 2001,120, 1666-1679.
    6. Kexin L, Yukio K, Kaku TI, et al, Hydroxyprolylserine derivatives JBP923 and JBP485 exhibit the antihepatitis activities after gastrointestinal absorption in rats. J Pharmacol Exp Ther, 2000, 294(2):510-5.
    7. Stacey G, Koh S, Granger C, et al. Peptide transport in plants. Trends Plant Sci,2002,7:257–63
    8. Urtti A, Johns SJ, Sadee W. Genomic structure of proton-coupled oligopeptide transporter hPEPT1 and pHsensing regulatory splice variant. AAPS Pharm. Sci,2001, 3:E6
    9. Saito H, Motohashi H, Mukai M, et al. Cloning and characterization of a pH-sensing regulatory factor that modulates transport activity of the human HC/peptide cotransporter PEPT1. Biochem. Biophys. Res. Commun, 1997, 28:577–82.
    10. Chen XZ, Steel A, Hediger MA. Hediger MA.Functional roles of histidine and tyrosine residues in theHC-peptide transporter PepT1. Biochem. Biophys. Res. Commun, 2000,16:726–30.
    11. Watanabe C, Kato Y, Ito S, et al. Na+/H+ Exchanger 3 affects transport property of H+/Oligopeptide Transporter 1.Drug Metab.Pharmacokinet, 2005,20(6):443-451.
    12. Thwaites DT, Kennedy DJ , Raldua D, et al. H+/dipeptide absorption across the human intestinal epithelium is controlled indirectly via a functional Na+/H+ exchanger. Gastroenterology,2002,122: 1322–1333.
    13. Sawada K ,Terada T, Saito H , et al. Distinct. Transport characteristics of basolateral peptide transporters between MDCK and Caco-2 cells. Pflugers Arch.2001,443 (1): 31-7.
    14. Leabman MK,Huang CC, DeYoung J, et al. Natural variation in human membrane transporter genes reveals evolutionary and functional constrains.proc Natl Acad Sci USA. 2003,100:5896-5901.
    15. Zhang EY, Fu DJ, Pak YA, et al. Genetic polymorphisms in human proton-dependent dipeptide transporter PEPT1: implications for the functional role of Pro586. J Pharmacol Exp Ther. 2004 ,310 (2):437-45.
    16. Anderle P, Nielsen CU, Pinsonneault J, et al.Genetic variants of the human dipeptide transporter PEPT1. Mol Pharm. 2004,1(4):300-8.
    17. Buyse M, Berlioz F, Guilmeau S, et al. PepT1-mediated epithelial transport of dipeptides and cephalexin is enhanced by luminal leptin in the small intestine. J Clin Invest.2001 108(10):1483-94.
    18. Thamotharan M, Bawani SZ, Zhou X, et al. Hormonal regulation of oligopeptide transporter Pept-1 in a human intestinal cell line. Am J Physiol Cell Physiol.1999, 276: C821–C826.
    19. Gangopadhyay A, Thamotharan M, Adibi SA. Regulation of oligopeptide transporter (Pept-1) in experimental diabetes.Am J Physiol Gastrointest Liver Physiol.2002,283: G133–G138.
    20. Watanabe K, Jinriki T, Sato J. Effects of Progesterone and Norethisterone on Cephalexin Transport and Peptide Transporter PEPT1 Expression in Human Intestinal Cell Line Caco-2. Biol Pharm Bull, 2006,29(1)90—95.
    21. Li Q,Sai Y, Kato Y, et al. Influence of drugs and nutrients on transporter gene expression levels in Caco-2 and LS180 intestinal epithelial cell lines. Pharm. Res.,2003, 20, 1119—1124.
    22. Ashida K, Katsura T, Motohashi H, et al.Thyroid hormone regulates the activity and expression of the peptide transporter PEPT1 in Caco-2 cells. Am J Physiol Gastrointest Liver Physiol.2002, 282: G617–G623.
    23. Ashida K, Katsura T, Saito H,et al. Decreased Activity and Expression of Intestinal Oligopeptide Transporter PEPT1 in Rats with Hyperthyroidism in Vivo. Pharmaceutical Research.2004,21(6)969-975.
    24. Nielsen CU, Amstrup J, Steffansen B, et al. Epidermal growth factor inhibits glycylsarcosine transport and hPepT1 expression in a human intestinal cell line. Am J Physiol Gastrointest Liver Physiol.2001,281: G191–G199.
    25. Nielsen CU, Amstrup J, Nielsen R, et al. Epidermal growth factor and insulin short term increase hPepT1 mediated glycylsarcosine uptake in Caco-2 cells. Acta Physiol Scand.2003,178: 139–148.
    26. Buyse M, Charrier L, Sitaraman S, et al. Interferon-γIncreases hPepT1-Mediated Uptake of Di-Tripeptides Including the Bacterial Tripeptide fMLP in Polarized Intestinal Epithelia. American Journal of Pathology2003,(163)5:1969-77.
    27. Vavricka SR, Musch MW, Fujiya M,et al. Tumor necrosis factor-alpha and interferon-gamma increase PepT1 expression and activity in the human colon carcinoma cell line Caco-2/bbe and in mouse intestine.Pflugers Arch,2006,452(1):71-80.
    28. Thamotharan M, Bawani SZ, Zhou X, et al. Functional and molecular expression of intestinal oligopeptide transporter (Pept-1) after a brief fast. Metabolism.1999, 48:681–684.
    29. Ihara T,Tsujikawa T, Fujiyama Y, et al. Regulation of PepT1 peptide transporter expression in the rat small intestine under malnourished conditions. Digestion.2000, 61:59–67.
    30. Ogihara H, Suzuki T, Nagamachi Y, et al. Peptide transporter in the rat small intestine: ultrastructural localization and the effect of starvation and administration of amino acids. Histochem J, 1999,31:169–174.
    31. Naruhashi K, Sai Y, Tamai I, et al.PepT1 mRNA expression is induced by starvation and its level correlates with absorptive transport of cefadroxil longitudinally in the rat intestine.Pharm Res, 2002,19:1417–1423.
    32. Shimakura J, Terada T, Saito H, et al. Induction of intestinal peptide transporter 1 expression during fasting is mediated via peroxisome proliferator-activated receptor alpha. Am J Physiol Gastrointest Liver Physiol.2006,291(5):G851-6.
    33. Pan X,Terada T, Okuda M, et al.The diurnal rhythm of the intestinal transporters SGLT1 and PEPT1 is regulated by the feeding conditions in rats.J Nutr,2004,134(9):2211-5.
    34. Okamura M,Terada T, Katsura T, et al. Inhibitory effect of zinc on PEPT1-mediated transport of glycylsarcosine and beta-lactam antibiotics in human intestinal cell line Caco-2. Pharm Res.2003,20(9):1389-93.
    35. Wenzel U, Kuntz S, Diestel S, et al.PEPT1-Mediated Cefixime Uptake into Human Intestinal Epithelial Cells Is Increased by Ca2+ Channel Blockers. Antimicrob Agents Chemother,2002, 46(5):1375-1380.
    36. Berlioz F, Julien S, Tsocas A, et al. Neural modulation of cephalexin intestinal absorption through the di- and tripeptide brush border transporter of rat jejunum in vivo.J Pharmacol Exp Ther.1999,288:1037-44.
    37. Berlioz F, Maoret JJ, Paris H, et al.α2-Adrenergic Receptors Stimulate Oligopeptide Transport in a Human Intestinal Cell Line. J Pharmacol Exp Ther , 2000,1294:466–472.
    38. Tanaka H, Miyamoto KI, Morita K, et al. Regulation of the PepT1 peptide transporter in the rat small intestine in response to 5-fluorouracil-induced injury. Gastroenterology,1998, 114: 714-723.
    39. Inoue M, Terada T, Okuda M, et al. Regulation of human peptide transporter 1 (PEPT1) in gastric cancer cells by anticancer drugs.Cancer Lett, 2005, 8;230(1):72-80.
    40. Hang CH, Shi JX, Sun BW, et al. Apoptosis and Functional Changes of Dipeptide Transporter (PepT1) in the Rat Small Intestine After Traumatic Brain Injury.J Surg Res, 2007, 137(1):53-60.
    41. Sundaram U, Wisel S, Coon S.Mechanism of inhibition of proton: dipeptide co-transport during chronic enteritis in the mammalian small intestine. Biochim Biophys Acta.2005, 1714(2): 134-40.
    42. Shi B, Song D, Xue H, et al.PepT1 Mediates Colon Damage by Transporting fMLP in Rats with Bowel Resection. J Surg Res.2006, 136(1):38-44.
    43. Shi B, Song D, Xue H, et al. Abnormal Expression of the Peptide Transporter PepT1 in the Colon of Massive Bowel Resection Rat: A Potential Route for Colonic Mucosa Damage by Transport of fMLP. Dig Dis Sci, 2006, 51(11):2087-93.
    44. Lardy H, Thomas M, Noordine Ml, et al. Changes induced in colonocytes by extensive intestinal resection in rats. Dig Dis Sci, 2006, 51(2):326-32.
    45. Shen H, Smith DE, Brosius FC III. Developmental expression of PEPT1 and PEPT2 in rat small intestine, colon, and kidney. Pediatr Res, 001 49:789-795.
    46. Terada T, Inui K. Peptide transporters: structure, function, regulation and application for drug delivery. Curr Drug Metab.2004, 5(1):85-94.
    47. Sai Y. Biochemical and molecular pharmacological aspects of transporters as determinants of drug disposition. Drug Metab Pharmacokinet.2005, 20(2):91-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700