用户名: 密码: 验证码:
形变过程中0Cr18Ni9不锈钢的宏细观力学特性与损伤研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从宏观和细观相结合角度来研究外载(包括单调加载、循环加载等)作用下多晶材料的力学行为与损伤演化是近年来材料科学、力学和机械设计研究者共同关注的课题之一。这方面的深入研究不仅有助于深化对多晶体形变与损伤过程本质的认识,而且对于发展先进的疲劳寿命预测方法具有重要的意义。
     本文首先围绕国内外宏细观力学与损伤研究的主要进展进行了回顾与总结。在细观实验方法中,特别指出了近年来发展迅速的先进表面力学测试技术—“深度-传感压痕(DSI)仪”是研究材料细观力学特性的有效手段。并结合0Cr18Ni9不锈钢开展了两种变形条件下材料的宏细观力学与损伤行为的试验和理论研究工作。
     根据深度-传感压痕测试的特点,本文研究确定出既满足细观力学测试要求,又具有最小压痕尺寸效应(ISE)的压入载荷、压载保荷时间以及最小测试样本数等,作为本文细观力学测试的试验条件。
     采用静力拉伸与压痕测试相结合,研究了单调形变过程中材料的宏细观力学性能(包括弹性、塑性、强度、应变硬化等指标)的变化特征,得出了宏观力学性能与细观力学性能两者在统计意义上相一致,单调形变过程中材料的细观力学性能服从正态概率分布;基于单调加载下细观弹性模量的统计变化特征,建立起描述延性损伤的概率模型。
     采用低周疲劳与静力拉伸试验相结合研究了不同疲劳损伤阶段材料的宏观弹性、塑性、强度、应变硬化等指标的变化规律,并结合压痕测试与细观力学计算(基于M.Dao方法),研究了循环形变过程中材料细观力学性能的统计变化特征及其与宏观力学性能之间的联系,通过细观结构的金相测试与疲劳断口的SEM观测进一步分析了疲劳力学性能变化的微观机制。依据连续损伤力学思想方法与疲劳过程能量耗散试验结果,建立起采用压痕塑性功定义疲劳损伤变量的概率表达式,并应用于循环变形下0Cr18Ni9不锈钢的表面损伤演化研究。
Investigation of macro- and meso- mechanical properties and damage evolution characteristics of polycrystalline materials under the external loading (monotonic loading,cyclic loading etc) is one of the most common topic in material science, mechanics and mechanical designs in recent years. This in-depth research will not only help to deepen the essensial understanding of polycrystalline deformation and damage, but it is also of great significance to develop advanced methods for fatigue life prediction.
     Firstly this paper is a review of macro- and meso- mechanical properties and damage research both in China and abroad. Among mesoscopic experimental methods, the "Depth-Sensing Indentation (DSI)" technique,one of the most booming developments of advanced mechanical surface testing techniques,is an effective method to study the meso-characteristics of materials. The experimental and theoretical research of the macro- and meso-mechanics and damage behaviors of 0Crl8Ni9 stainless steel is carried out in two different kinds of deformation conditions.
     According to the characteristics of the depth-sensing indentation test, testing conditions of meso-mechanics in this paper are determined, which meet demands of both meso-mechanics tests and that of the indentation load which has the smallest indentation size effect (ISE),smallest holding time and the minimum indentation numbers of samples tested and so on.
     The relationship between macro- and meso-mechanical properties (including elasticity, plasticity, strength and strain hardening exponent, etc) during the process of monotonic deformation which has obtained statistical consistence in this paper is systematicly studied in use of static tensile tests in combination with indentation tests. The meso-mechanical properties during monotonic deformation are subject to normal probability distribution. Based on statistical characteristics of mesoscopic elastic modulus , a probability model is established to describe ductile damage.
     In combination of fatigue loading and indentation testing, we systematicly study the evolution of macro-indexes such as elasticity, plasticity, strength and strain hardening exponent in different stages of fatigue damage during cyclic deformation of materials. Macro- and meso- relations are studied with the help of meso-mechanical calculation algorithm and testing techiques. Meanwhile, micro-mechanisms of mechanical properties are on research by means of metallography and SEM analysis. Based on principal theories of damage mechanics and energy exhaustion results in fatigue tests, the probability expression developed in terms of fatigue damage varibles in definition of plastic work is applied to evolution research of surface damage during cyclic deformation of 0Cr18Ni9 stainless steel.
引文
[1]王自强,徐秉业,黄筑平.塑性力学和细观力学文集[M].北京:北京大学出版社,1993.
    [2]李剑荣,虞吉林.随机晶界分布对铝多晶材料晶间破坏行为的影响[J].固体力学学报,2004,25(3):335-338.
    [3]Kuhlmann-Wilsdorf D.The theory of dislocation based crystal plasticity[J].Philosophical Magazine A,1999,79(54):955-1008.
    [4]Hansen N,Huang X.Microstructure and flow stress of polycrystals and single crystalsm[J].Acta Mater,1998,46(5):1827-1836.
    [5]范镜泓.材料变形与破坏的多尺度分析[M].北京:科学出版社,2008.
    [6]V.E.Panin.Physical Mesomechanics of Heterogeneous Media and Computer-Aided Design of Materials[J].Cambrige.Int.Sci,1995,:450.
    [7]杨卫.宏微观断裂力学[M].北京:国防工业出版社,1995.
    [8]黄克智,肖纪美.材料的损伤断裂机理和宏微观力学理论[M].北京:清华大学出版社,1999.
    [9]夏蒙葬,韩闻生,柯孚久,等.统计细观损伤力学和损伤演化诱致突变(I)[J].力学进展,1995,25(1):1-40.
    [10]R.G.Tryon.Fatigue & Fracture of Engineering Materials & Structures,1998,21(2):241.
    [11]G.I.Tayor.The plastic disfunction of metals[J].J.Inst.Met,1938,63:307.
    [12]T.H.Lin.Analysis of elastic and plastic strains of a face-centred cubic crystals[J].J.Mech.Phys.Solids,1957,5:143.
    [13]A.V.Hershey.The elasticity of an isotropic aggregate of anisotropic cubic crystals[J].J.Apple.Mech,1954,21:236.
    [14]E.Kroner.On the plastic deformation of polycrystals[J].Acta Metals,1961,9:155-161.
    [15]B.Budiansky,T.T.Wu.Theoretical prediction of plastic strains of polycrystals[J].J.Apple.Mech,1962,29:1175.
    [16]J.D.Eshelby.The determination of the elastic field of an ellipsoidal inclusion and related problems[J].Proc.Roy.Soc,1957,A241:376.
    [17]R.Hill.Continuum micro-mechanics of elasto-plastic polycrystals[J].J.Mech.Phys.Solids,1965,13:89-101.
    [18]L.Lemaitre.Evaluation of dissipation and damage in metals submitted to dynamic loading[C].Mechanical behavior of materials,1971.Japan:
    [19]F.A.Leckie,D.R.Hayhurst.Creep in continues and structures[C].Proc.Roy.Soc,1974.London:
    [20]杜善义,王彪.复合材料细观力学[M].北京:科学出版社,1998.
    [21]郑长卿.韧性断裂细观力学的初步研究及其应用[M].西安:西北工业大学出版社,1988.
    [22]戚承志,钱七虎.材料变形及损伤演化的微观物理动力机理[J].固体力学学报,2002,23(3):312-317.
    [23]李广平.拉伸荷载作用下岩石的细观损伤力学模型[J].岩土力学,1995,16(1):54-62.
    [24]杨光松.损伤力学与复合材料损伤[M].北京:国防工业出版社,1995.
    [25]白洁,夏蒙梦,柯孚久,等.损伤统计演化方程的性质和数值模拟[J].力学学报,1999,31(1):38-48.
    [26]L.M.Kachnov.Time of the rupture process under creep condition[J].Izvestiia Akademia Nauk SSSR,1958,8:26-31.
    [27]J.Lemaitre.How to use Damage Mechanics[J].Nuclear Engineering and Design,1984,80(2):233-245.
    [28]J.L.Chaboche,P.M.Lesne.Non-Linear Continuous Fatigue Damage Model[J].Fatigue Fract Engng Mater Struct.1988.11(1):1-17.
    [29]胡社军,张以增.球化20碳钢的损伤与弹性模量的变化[J].机械强度,1989,11(2):13-18.
    [30]J.Lemaitre,J.Dufailly.Damage Measurements[J].Engng Fract Mech,1987,28(5/6):643-661.
    [31]M.Klesnil,P.Lukas.Fatigue of Metallic Materials[M].New York:Elsevier,1980.
    [32]Taylor.G.I.Inst.Metals,1938,62:307.
    [33]杨卫.细观力学与细观损伤力学[J].力学进展,1992,22(1):1-9.
    [34]E.Kroner.Modelling Small Deformations of Polycrystals[J].Statistical Modelling,1986,66:229-291.
    [35]J.D.Eshelby.The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems[J].Mathematical and Physical Sciences,1957,241:376-396.
    [36]T.Mnra.Micromechanics of Defects in Solids[M].Martinus Nijhoff,1986.
    [37]M.T.Mura.Micromechanics of defeats in solids[M].The hague:Martinus Nijhoff,1987.
    [38]杨庆生.计算微观力学与复合材料的微结构设计[D]:[博士学位论文].大连:大连理工大学,1991.
    [39]樊学军.均匀化理论及其在生物力学中的应用[J].力学进展,1996,26(2):187-197.
    [40]赵颖华.复合材料损伤细观力学分析[D]:[博士学位论文].北京:清华大学,1996.
    [41]侯善芹.复合材料宏观性能的统计特征分析[D]:[硕士学位论文].大连:大连理工大学,2006.
    [42]吴林志,杜善义.含夹杂复合材料宏观性能研究[J].力学进展,1995,25(3):410-423.
    [43]张研,张子明.材料细观力学[M].北京:科学技术出版社,2008.
    [44]YANG Wei.Advances in Mechanics,1992,22(1):1.
    [45]朱艳英,丁喜峰,张景超.用激光散斑法检测金属材料的焊接缺陷[J].激光杂志,1999,20(4):56-60.
    [46]刘宝琛.实验断裂、损伤力学测试技术[M].北京:机械工业出版社,1994.
    [47]黄建永,邢永明,赵春旺.用显微云纹干涉法研究SiC/Ti-15-3界面热残余应力场[J].实验力学,2006,21(2):177-182.
    [48]毛毳,佟景伟.显微干涉网格法测量曲面物体表面应变[J].实验力学,1999,14(4):515-519.
    [49]W.C.Oliver,G.M.Pharr.An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J].J.Mater.Res,1992,7(6):1564-1583.
    [50]M.F.Doener,W.D.Nix.J.Mater.Res,1986,1:601.
    [51]A.E.Giarmakopoulos,S.Suresh.Determination of elastoplastic properties by insterumented sharp indentation[J].Scripta mater,1999,40(10):1191-1198.
    [52]S.Suresh,A.E.Giannakopoulos.Acta mater,1998,42(5755).
    [53]M.Dao,N.Choliacoop,K.J.Van Vliet,T.A.Venkatesh,S.Suresh.Computational modeling of the forward and reverse problems in instrumented sharp indentation[J].Acta mater,2001,49:3899-3918.
    [54]查海波.基于深度敏感压痕技术研究镍基超合金疲劳细观力学性能[D]:[硕士学位论文].杭州:浙江大学,2010.
    [55]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [56]李强,贺子如.玻璃态高聚物细观损伤断裂统计力学[J].力学进展,1995,25(4):451-465.
    [57]GB/T 6394-2002,金属平均晶粒度测定的方法[S].
    [58]A.A.Ehnustafa,D.S.Stone.Indentation size effect in polycrystalline F.C.C.metals[J].Acta Materialia,2002,50(14):3641-3650.
    [59]S.Wole.Mechanical Properties of Engineered Materials[M].New Jersey:Princeton University,2003.
    [60]J.Lemaitre,J.Dufailly.Engineering Damage Mechanics[M].New York:Springer,2004.
    [61]Duyi Ye,Zhenlin Wang.An approach to investigate pre-nucleation fatigue damage of cyclically loaded metals using Vickers microhardness tests[J].International Journal of Fatigue,2001,23:85-91.
    [62]Ye Duyi,Wang Zhenlin.A new approach to low-cycle fatigue damage based on exhaustion of static toughness and dissipation of cyclic plastic strain energy during fatigue[J].International Journal of Fatigue,2001,23:679-687.
    [63]叶笃毅,王德俊.疲劳损伤过程中45#钢剩余力学性能的变化特征[J].材料研究学报,1996,10(4):357-362.
    [64]M.F.Ashby.The deformation of plastically non-homogenous alloys[J].Philos.Mag,1970,21:399-424.
    [65]周慧久,黄明志.金属材料强度学[M].北京:科学技术出版社,1989.
    [66]G.Baudry,A.Pineau.Influence of strain-induced martensitic transformation on the low-cycle fatigue behavior of a stainless steel[J].Materials Science and Engineering A,1977,28(2):229-242.
    [67]H.J.Bassler,D.Eifler.Low cycle fatigue and elasto-plastic behavior of materials[M].Elsevier Science Ltd,1998.
    [68]M.Smaga,F.Walther,D.Eifler.Deformation-induced martensitic transformation in metastable austenitic steels[J].Mater.Sci.Eng.A,2008,:483-484.
    [69]D.Hennessy,G.Steckel,C.Altstetter.Phase transformation of stainless steel during fatigue[J].Metall.Trans,1976,7A(3):415-424.
    [70]S.Biswas,S.Sivaprasad,N.Narasaish,S.Tarafder,P.C.Chakraborti.Load history effect on FCGR behaviour of 304LN stainless steel[J].Int.J.Fatigue,2007,29:786.
    [71]M.Bayerlein,H.J.Christ,H.Mughrabi.Mater.Sci.Eng.A,1989,114:L11-L16.
    [72]D.P.Harvey,R.J.Bonenberger,J.M.Wolla.Effects of sequential cyclic and monotonic loadings on damage accumulation in Nickel 270[J].Int.J.Fat,1998,20(4):291-300.
    [73]D.Tabor.The Handness of Metals[M].New York:Oxford University Press,1951.
    [74]R.Rodrignez,I.Culierrez.Correlation between nanoindentation and tensile properties:influence of the indentation size effect[J].Mater.Sci.Eng.A,2003,361:377-384.
    [75]林巨才.现代硬度测量技术及应用[M].中国计量出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700