用户名: 密码: 验证码:
甘蓝型油菜基因组中控制种子维生素E含量QTL的检测和分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
维生素E又名生育酚,是重要的维生素之一,属于脂溶性维生素。具有强抗氧化性,在动物及植物生命中有着不可取代的重要地位。天然的维生素E主要来自油料作物的种子,由于油菜富含维生素E和其广大的种植面积,作为油料作物的油菜日渐成为研究的对象。
     本实验室以甘蓝型冬油菜品种Tapidor和半冬性油菜品种Ningyou7亲本构建了TN DH群体,并在2年时间3个环境进行了种植。实验室还在TN DH群体基础上衍生了RC-F_2群体,并在荆州环境下与TN DH群体一起种植。本研究结合文献,针对可能影响维生素E检测和合成的因素进行了初步的探讨。首先完善了测量方法中存在的不足——正己烷的挥发带来的实验误差。其次,发现环境对维生素E各组分的影响效应是不一样的。α-生育酚和γ-生育酚的含量比总生育酚含量更敏感于环境的变化。将同一种植环境的两个群体比较发现,RC-F_2群体表现出杂种优势。本研究还比较了甘蓝型和白菜型的两个种质资源种子中维生素E合成情况,发现白菜型油菜种子中的α-生育酚含量远远低于甘蓝型油菜种子中的α-生育酚含量。
     本研究以实验室构建的TN图谱为基础,采用QTL分析软件WinQTLcart2.5,QTL作图软件QTLmapper2.0对种子中维生素E的各性状进行QTL定位及互作位点的检测和遗传效应分析。三个环境下的两个群体在p=0.05水平上共检测到54个影响种子中维生素E含量的QTL,通过BioMercator-2.1软件的整合得到25个独立的控制油菜种子维生素E含量的QTL。针对环境和群体中表达稳定的QTL——QtcA07-1,一个主要控制种子中α-生育酚含量的QTL,构建了BC_4F_2群体。利用BC_4F_2群体,不仅验证了QtcA07-1在TN群体中的存在,而且缩短了QtcA07-1的置信区间,提高了Ningyou7背景的纯度。另一方面利用拟南芥维生素E合成代谢途径上的酶基因序列信息,根据Hpt1酶基因的序列设计标记引物Hpt1,将标记Hpt1定位在QtcA07-1置信区间内。
Vitamin E is one of the important micronutrient,it comprises a distinctive group of potent antioxidant compounds,and it is also called tocopherol.As its strong anti-oxidation,it becomes an essential element of animals and plants.Rapeseed is one of oil seed which are rich in vitamin E.Rapeseed oil as an edible oil is very population in China,in addition,its extensive employment in European's transportation,which calls scientists to improving the quality of oil,and increasing vitamin E content in the rapeseed develops one scientific research direction.
     The winter-typed B.napus variety Tapidor and the semi-winter typed variety Ningyou7 are two parents.A DH population named with TN DH population was constructed with the two varieties,and a RC-F_2 population was constructed based on TN DH population in our lab.TN DH population was planted in three environments during two years,while RC-F_2 population was co-grew with the TN DH population under the environment in Jingzhou.Considering these factors influencing synthesis of vitamin E in rape seed,we improved the measurement firstly,taking the volatilization of hexane into account.Secondly,we found that different tocopherol composition was influenced by environment factor,α-tocopherol andγ-tocopherol showed much more sensitive to environment factor than total tocopherol did.Under the same environment,RC-F_2 population performed better than TN DH population about tocopherol content in the seed. This study also analysed two Brassica germplast population's vitamin E content,α-tocopherol content detected in Brassica rapa was much less than in Brassica napus.
     Combined TN map information,with QTL analysis software WinQTLcart2.5, QTLmapper2.0,there were 54 QTL(p=0.05) detected with the two populations.After integration with BioMercator-2.1 software,there still were 25 QTL,and 5 interaction loci pairs were detected.Asα-tocopherol has high activity,the QTL controllingα-tocopherol content—QtcA07-1 was selected,according to the information of QtcA07-1,BC_4F_2 was built up.With BC_4F_2,QtcA07-1 was confirmed,and the confidence interval was shortened,and the contribution from QtcA07-1 was enhanced.At the same time,Hpt1 enzyme belongs to the metabolism pathway of tocopherol,it was designed as a marker, and have been located in QtcA07-1.However,the result did not bring any more change except shortened QTL confident interval.
引文
1.戴忠良,侯喜林,潘跃平.结球甘蓝杂交新组合强力65的杂种优势分析.江苏农业学报,2007,23:76-77.
    2.丁效华.作物数量性状基因图位克隆研究进展.植物遗传资源学报,2005,6:464-468.
    3.贺道华,张献龙.数量性状由表型变异到基因发现的研究进展.遗传,2006,28:1613-1618.
    4.胡英考.植物维生素E合成及其生物技术改良.中国生物工程杂志,2004,24:32-35.
    5.黄智明,翁海波,席宇,韩绍印,王时征.转入HPT1基因的油菜种子中维生素E含量的提高.植物生理学通讯,2006,42:888-890.
    6.蒋守华,刘葛山,徐美琴.油料作物维生素E含量的研究进展.安徽农业科学,2007,35:5042-5043.
    7.李静,王之盛.储藏中微量元素对维生素E稳定性的影响.饲料工业,2001,22:17-18.
    8.梁俊.微波处理葡萄种子对维生素E和油质量的影响研究.食品科学,2002,23:23-27.
    9.龙卫华.甘蓝型油菜营养性状的QTL定位及杂种优势机理初探.[硕士学位论文].武汉:华中农业大学图书馆,2005.
    10.龙艳.甘蓝型油菜基因组中开花期QTL的检测和分析.[博士学位论文].武汉:华中农业大学图书馆,2007.
    11.钱文成,陶苏丹,陈德富,陈喜文.植物维生素E代谢工程研究.生物学通报,2006,41:13-15.
    12.邱丹.甘蓝型油菜DH作图群体的构建和重要农艺性状及品质性状的QTL分析.[博士学位论文].武汉:华中农业大学图书馆,2006.
    13.邵承斌,谭冬梅,李仁炳,蔡强.分光光度法测定麦绿素中的维生素E.重庆工商大学学报(自然科学版),2004,21:160-562.
    14.孙群,王建华,孙宝启.种子活力的生理和遗传机理研究进展.中国农业科学,2007,40:48-53.
    15.闫世江,赵俊.大白菜杂种优势预测研究.山西农业科学,2007,35:33-35.
    16.赵中秋,郑海雷,张春光.分子标记的发展及其在植物研究中的应用.生命科学研究,2000,4:68-74.
    17.章元明.作物QTL定位方法研究进展.科学通报,2006,51:2223-2231.
    18.朱永兴,王磊,张兰,张伟,范云六.拟南芥尿黑酸叶绿醇(HPT)基因启动子的分离及表达特性分析.作物学报,2007,33:554-559.
    19.Asins M J.Present and furure of quantitative trait locus analysis in plant breeding.Plant Breeding, 2002, 121:281-291.
    
    20. Abbasi A, Hajirezaei M, Hofius D, Sonnewald U, Voll L M. Specific Roles of a- and g-Tocopherol in Abiotic Stress Responses of Transgenic Tobacco. Plant Physiol, 2007, 143: 1720-1738.
    
    21. Ajjawi I, Shintani D. Engineered plants with elevated vitamin E: a nutraceutical success story. Trends Biotechnol, 2004, 104-107.
    
    22. Behl C. Vitamin E protects neurons against oxidative cell death in vitro more effectively than 17-β estradiol and induces the activity of the transcription factor NF- KB. J Neural Transm, 2000, 107:393-407.
    
    23. Brigelius-Flohe R, Kelly J F, SalonenJT, NeuzilJ, ZinggJ, Azzi A The European perspective on vitamin E: current knowledge and future research. Am J Clin Nutr, 2002, 76: 703-716.
    
    24. Cahoon E B, Hall S H, Ripp K G, Ganzke T S, Hitz W D, Coughlan S J. Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol, 2003, 21:1082-1087.
    
    25. ChasanR. Breaching the Callose Wall. The Plan Cell, 1992, 4:745-746.
    
    26. Ching, L.S., and S. Mohamed. Alpha-tocopherol content in 62 edible tropical plants. J Agric Food Chem, 2001, .49:3101-3105.
    
    27. Collakova E, DellaPenna D. Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol, 2001, 127: 1113-1124.
    
    28. Collakova E, DellaPenna D. The Role of Homogentisate Phytyltransferase and Other Tocopherol Pathway Enzymes in the Regulation of Tocopherol Synthesis during Abiotic Stress. Plant Physiol, 2003a, 133:930-940.
    
    29. Collakova E, DellaPenna D. Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Physiol, 2003b, 131:632-642.
    
    30. Collard B C Y, Jahufer M Z Z, Brouwer J B, Pang E C K . An introduction to markers quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica, 2005, 142: 169-196.
    
    31. DellaPenna D. Plant metabolic engineering. Plant Physiol, 2001, 125:160-163.
    
    32. DellaPenna D. Progress in the dissection and manipulation of vitamin E synthesis. Trends Plant Sci, 2005a, 10: 574-579.
    33. DellaPenna D. A decade of progress in understanding vitamin E synthesis in plants. J Plant Physiol, 2005b, 162: 729-737.
    
    34. DellaPenna D, Pogson B J. Vitamin Synthesis in Plants: Tocopherols and Carotenoids. Annu Rev Plant Biol, 2006a, 57:711-538.
    
    35. DellaPenna D. Genetic basis for natural variation in seed vitamin E levels in Arabidopsis thaliana. PNAS, 2006b, 18834-18841.
    
    36. DellaPenna D, Last R L. Progress in the dissection and manipulation of plant vitmin E biosynthesis. Plant Physiol, 2006c, 126:356-368.
    
    37. Dormann P. Functional diversity of tocochromanols in plants. Planta, 2007, 225:269-276.
    
    38. Dwiyanti M S, Ujiie A, Thuy L T B, Yamada T, Kitamura K. Genetic analysis of high a-tocopherol content in soybean seeds. Breeding Sci, 2007, 57:23-28.
    
    39. Evans. The islation from cottenseed oil of an alcohol resembling alpha tocopherol from wheat germ oil. Science, 1936, 83:421.
    
    40. Eenennaam A L V, Lincoln K, Durrett T P, Valentin H E, Shewmaker C K, Thorne G M, Jiang J, Baszis S R, Levering C K, Aasen E D, Hao M, Stein J C, Norris S R, Last R L. Engineering Vitamin E Content: From Arabidopsis Mutant to Soy Oil. Plant Cell, 2003, 15:3007-3019.
    
    41. Fernandez-Martinez J M, Perez-Vich B, Velasco L , Dominguez J. Breeding specialty oil types in sunflower. HELIA, 2007, 30:75-84.
    
    42. Gilliland, L.U., M. Magallanes-Lundback, C. Hemming, A. Supplee, M. Koornneef, L. Bentsink, and D. Dellapenna. Genetic basis for natural variation in seed vitamin E levels in Arabidopsis thaliana. Proc Natl Acad Sci U S A , 2006, 103:18834-18841.
    
    43. Goffman F D, Velasco L, Thies W. Quantitative determination of tocopherols in single seeds of rapeseed (Brassica napus L. ). Fett/Lipid 101 , 1999a, 4:142-145.
    
    44. Goffman F D, Thies W, Velasco L. Chemotaxonomic value of tocopherols in Brassicaceae. Phytochemistry, 1999b, 50:793-798.
    
    45. Goffman F D, Velasco L, Becker H C. Tocopherols accumulation in developing seeds and pods of rapeseed (Brassica napus L.) . Fett/Lipid 101 , 1999c, 10:400-403.
    
    46. Goffman F D, Becker H C. Genetic analysis of tocopherol content and composition in winter rapeseed. Plant Breeding, 2001, 120: 182-184.
    
    47. Garci'a-Moreno M J, Vera-Ruiz E M, Ferna'ndez-Marti'nez J M, Velasco L, Pe'rez-Vich B. Genetic and Molecular Analysis of High Gamma-Tocopherol Content in Sunflower. Crop Sci, 2006, 46:2015-2021.
    
    48. Granado,F., B. Olmedilla, C. Herrero, B. Perez-Sacristan, I. Blanco, and S. Blazquez. Bioavailability of carotenoids and tocopherols from broccoli: in vivo and in vitro assessment. Exp Biol Med (Maywood), 2006, 231:1733-8.
    
    49. Hu J, Vick B A. Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant mol bio repo, 2003, 21:289-294.
    
    50. Hunter S C, Cahoon E B. Enhancing Vitamin E in Oilseed: Unraveling Tocopherol and Tocotrienol Biosynthesis. Lipids. 2007, 42:97-108.
    
    51. Ishimaru K, Ono K, Kashiwagi T. Identification of a new gene controlling plant height in rice using the candidate-gene strategy. Planta , 2004 , 218:388-395.
    
    52. Karunanandaa B, Qi Q, Hao M, Baszis S, Jensen P, Wong Y H, Jiang J, Venkatramesh M, Gruys K J, Moshiri F, Post-Beittenmiller D, Weiss J D, Valentin E. Metabolically engineered oilseed crops with enhanced seed tocopherol. Metab Eng , 2005, 7:384-400.
    
    53. Kumar R , Raclaru M, Schuβeler T , Gruber J, Sadre R, LuhsW, Zarhloul K , Friedt W , Enders D , Frentzen M, Weier D. Charaterisation of plant tocopherol cyclases and their overexpression in transgenic Brassica napus seeds. FEBS Lett, 2005, 579: 1357-1364.
    
    54. Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001, 103:455-461.
    
    55. Maeda, H., W. Song, T.L. Sage, and D. DellaPenna. Tocopherols play a crucial role in low-temperature adaptation and Phloem loading in Arabidopsis. Plant Cell, 2006, 18:2710-2732.
    
    56. Marwede V, GuL M K, Becker H C, Ecke W. Mapping of QTL controlling tocopherol content in winter oilseed rape. Plant Breeding, 2005, 124:20-26.
    
    57. Munne-Bosch S, Falk J. New insights into the function of tocopherols in plants. Planta, 2004, 218:323-326.
    
    58. Munne-Bosch S, Alegre L. The function of tocopherols and tocotrienols in plants.Crit Rev Plant Sci, 2002, 21:31-57.
    
    59. Peterson A H, Lander E S, Hewitt J D, Peterson S, Lincoln S E, Tanksley S D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 1988, 335:721-726
    
    60. Parkin I A P, Lydiate D J, Trick M. Assessing the level of collinearity between Arabidopsis thaliana and Brassica napus for A. thaliana chromosome 5. Genome, 2002, 45:356-366
    
    61. Parkin I A P, Gulden S M, Sharpe A G, Lukens L, Trick M, Osborn T C, Lydiate D J. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics, 2005, 171:765-781
    
    62. Rocheford T R, Wong J C, Egesel C O, Lambert R J. Enhancement of Vitamin E Levels in Corn. Jthe Amer Coll Nutr, 2002 , 21:191-198.
    
    63. Raclaru M, Grube J, Kumar R, Sadre R, Lulls W, Zarhloul M K, Friedt W, Frentzen M, Weier D. Increase of the tocochromanol content in transgenic Brassica napus seeds by overexpression of key enzymes involved in prenylquinone biosynthesis. Mol Breeding, 2006, 18:93-107.
    
    64. Richards A, Wijesundera C, Salisbury P. Genotype and Growing Environment Effects on the Tocopherols and Fatty Acids of Brassica napus and B. juncea. J Am Oil Chem Soc, 2007, 85:159-168.
    
    65. Schneider C. Chemistry and biology of vitamin E. Mol Nutr Food Res, 2005, 49:7-30.
    
    66. Shintani D, DellaPenna D. Elevating the Vitamin E Content of Plants Through Metabolic Engineering. Science, 1998, 282:2098-2100.
    
    67. Shintani DK, Cheng Z, DellaPenna D. The role of 2-methyl-6-phytylbenzoquinonemethyltransferase in determining tocopherol composition in Synechocystis sp. PCC6803. FEBS Lett, 2002, 511:1-5.
    
    68. Stam P. Marker-assisted introgression: speed at any cost? EucaLeafVege, 2003, 117-124.
    
    69. Sattler S, Gilliland L U, Magallanes-Lundback M, Pollard M , DellaPenna D. Vitamin E Is Essential for Seed Longevity and for Preventing Lipid Peroxidation duing Germination. Plant Cell, 2004, 16: 1419-1432.
    
    70. Salvi S, Tuberosa R. To clone or not to clone plant QTLs: present and future challenges. Trends plant sci, 2006, 10:297-303.
    
    71. Sattler S E, Me ne-Saffrane' L, Farmer E E, Krischke M, Mueller M J, DellaPenna D. Nonenzymatic Lipid Peroxidation Reprograms Gene Expression and Activates Defense Markers in Arabidopsis Tocopherol-Deficient Mutants. Plant Cell, 2006, 18: 3706-3720.
    
    72. Smallwood M. The impact of genomics on crops for industry. Sci Food Agric, 2006, 86: 1747-1754.
    
    73. TraberMG. Vitamin E Regulatory Mechanisms. Annu Rev Nutr, 2007, 27:347-362.
    
    74. Valentin H E, Qi Q. Biotechnological production and application of vitamin E: current state and prospects. Appl Mic Biotechnol, 2005, 68:436-444.
    
    75. Valentin H E, Lincoln K, Moshiri F, Jensen P K, Qi Q, Venkatesh T V, Karunanandaa B, Baszis S R, Norris S R, Savidge B, Gruys K J, Last R L. The Arabidopsis vitamin E pathway gene5-l Mutant Reveals a Critical Role for Phytol Kinase in Seed Tocopherol Biosynthesis. Plant Cell, 2006 , 18:212-224.
    
    76. Wong J C, Lambert R J, Tadmor Y, Rocheford T R. QTL Associated with Accumulation of Tocopherols in Maize. Crop Sci, 2003, 43:2257-2266.
    
    77. Zhu C, Naqvi S, Gomez-Galera S, Pelacho A M, Capell T, Christou P. Transgenic strategies for the nutritional enhancement of plants. Trends Plant Sci, 2007, 1:548-555.
    
    78. http://www.choosan.com/HTML/Info1588.html
    
    79. http://en.wikipedia.org/wiki/Tocopherol
    
    80. http://www.choosan.com/HTML/Info1588.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700