用户名: 密码: 验证码:
洛克沙胂在猪体表组织和可食性组织中残留的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
洛克沙胂作为人工合成有机胂类饲料添加剂,具有促进生长和改善肤色等作用。有机胂的残留标识物是以总砷计,美国FDA规定食品动物肝脏和肾脏中的MRL为2mg/kg、肌肉和其它组织中的MRL为0.5mg/kg。如果宰杀动物的可食性组织中药物残留量超过MRL,该食品动物不能上市,会造成一定的经济损失。通过检测一种容易获得的体表组织中总砷残留量估计可食性组织中总砷残留量是否低于MRL,对洛克沙胂的残留监控有较大的意义。本实验旨在研究洛克沙胂在猪体内可食性组织(肝脏、肾脏和肌肉)和体表组织(尿液、粪便和毛发)中的残留消除规律,寻找一个消除规律与可食性组织相似的体表组织,建立这一体表组织和可食性组织的残留相关性。在实际生产中,不需要宰杀动物,通过检测体表组织中的药物残留量就可以推测出可食性组织中的残留量,达到活体检测的目的,减少经济损失。
     本试验建立了洛克沙胂在猪体内可食性组织和体表组织中微波消解-原子荧光总砷测定方法以及有机提取-微波消解-原子荧光间接测定洛克沙胂原形方法。仪器的检出限为0.0133gg/kg。总砷测定方法的回收率范围为92%-111%,日间变异系数范围为2.8%-7.9%;原形测定方法的回收率范围为80%-102%,日间变异系数范围为4.2%-10.3%。
     15头长白二元杂交猪连续混饲100mg/kg洛克沙胂7天后,采用总砷测定方法和间接测定原形方法检测肌肉、肝脏、肾脏、尿液、粪便、毛发中总砷含量和原形含量,同时监控空白饲料和饮水中的砷含量。结果表明,空白饲料和饮水中总砷含量接近为零。动物肌肉、肝脏以及肾脏组织中总砷含量很高,而洛克沙胂原形含量较少,说明洛克沙胂在猪体内是以代谢物形式存在。粪便中总砷和原形药物浓度都很高,相当于给药量的80%左右,说明洛克沙胂大部分没有被吸收,以原形形式从粪便中排出。体内总砷含量以肝脏最高,其次是肾脏,肌肉中的含量变化很小。肝脏、肾脏以及肌肉中总砷消除速率常数分别为0.14d~(-1)、0.11d~(-1)和0.05d~(-1),说明在猪体内可食性组织中的消除速率从高到低依次为:肝脏、肾脏、肌肉。粪便和尿液中总砷消除速率常数分别为0.13d~(-1)和0.11d~(-1),毛发中总砷浓度在整个试验阶段呈蓄积状态。说明体表组织中的消除速率从高到低依次为:粪便、尿液、毛发。
     根据可食性组织和体表组织消除速率常数的相似性,选择尿液和粪便作为建立相关性的体表组织。在快消除相,肾脏和肝脏中总砷残留量与尿液中总砷残留量呈线性关系,相关回归方程分别为y_K=1.01x+326.7和y_L=1.90x+448.9,相关系数分别为0.9916和0.9784;肾脏和肝脏中的总砷残留量与粪便中总砷残留量呈线性关系,相关回归方程分别为y_K=0.26x+605.1和y_L=6.43x-2624.7,相关系数分别为0.9763和0.9902。在慢消除相,肾脏以及肝脏中药物残留量与尿液中药物残留量呈线性关系,相关方程分别为y_K=2.75x+23.28和y_L=5.04x-6.33,相关系数分别为0.9973和0.9960;肝脏及肾脏中药物残留量与粪便中药物残留量呈线性关系,y_K=0.97x+83.1和y_L=1.83x-207.8,相关系数分别为0.9946和0.9724。上述回归方程经统计学检验,回归均呈极显著(P<0.01)。回归方程推算出的肝脏和肾脏中药物浓度的预测值与实测值进行方差分析,结果表明,预测值与实测值间无显著性差异(P>0.05)。
     本文所建立的分析方法灵敏度高,操作简单,检测周期短,同时可以作为检测其它几种有机胂制剂在其他动物体内残留的参考。残留消除试验详细的分析了总砷在猪体内可食性组织中消除规律,并根据总砷在体表组织和可食性组织中的消除规律,建立了尿液和粪便与肝脏以及肾脏的残留相关性,肝脏和肾脏中药物残留量与尿液或粪便中药物残留量都呈线性关系,统计学检验回归关系呈极显著(P<0.01),预测值与实测值间无显著性差异(P>0.05),可以用于实际检测,避免提前宰杀动物,减少经济损失。具有可指导实际生产、避免残留、提高产出等实际意义。
Roxarsone is an anthropogenic organic-arsenic compound that is used widely as an additive to poultry and swine feed for anti-coccidiosis and for improved feed efficiency. The FDA regulated the MRL of roxarsone is 2mg/kg in kidney and liver tissues,is 0.5mg/kg in muscle and other tissues.If the tolerance is exceeded,the carcass may not be used for human food.A preslaughter test for total arsenic in an easily accessible biological fluid is needed to predict if the concentration of total arsenic is below tolerance in the edible tissues before the swine is slaughtered.
     The aim of current study is finding the rule of residue depletion in the edible tissues and surface tissues of swine.Find a suitable surface tissue which the rule of depletion the same as edible tissues by animal experiment.And construct the residue correlation between this surface tissue and edible tissues.In practice,a detection applied to a pre-slaughter surface tissue sample collected from a suspect animal should be able to predict if the edible tissue sample of the same animal slaughtered at this time would be below tolerance - and safe for human food or greater than tolerance-leading to a requirement for increased drug elimination time.
     In current study,two detection methods were developed.One was developed for directly detection of total arsenic in edible tissues and surface tissues of swine by microwave digestion couple with hydride generation-atom fluorescence spectrometry. Another method was developed for indirect detection of roxarsone in edible tissues and surface tissues of swine by hydride generation-atom fluorescence spectrometry couple with organic-solvent extraction system and microwave digestion system.The limit of detection of instrument was 0.0133μg/kg.Recoveries of total arsenic determination method ranged from 92%to 111%,Intra-day coefficients of variation(CV)(under repeatability conditions) ranged from 2.8%to 7.9%.Recoveries of parent drug determination method ranged from 80%to 102%,Intra-day coefficients of variation(CV) (under repeatability conditions) ranged from 4.2%to 10.3%.
     Roxarsone was administrated to swine in medicated feed at the level of 100mg/kg for successive 7 days,the upper two methods were used to determine the residue of parent drug and total arsenic in muscle,liver,kidney,urine,feces and hair.The concentrations of total arsenic in edible tissues were high,but the concentrations of parent drug in edible tissues were low.This result indicated the roxarsone exist as metabolites in animal body. The concentration of total arsenic of in edible tissues was:liver>kidney>muscle.The concentrations of roxarsone and total arsenic were high,this indicated the roxarsone could not be absorbed and drugs were almost excreted directly by feces.The depletion rates of total arsenic in kidney,liver and muscle were 0.14d~(-1),0.11d~(-1) and 0.05d~(-1),respectively. This indicated the rate of depletion of total arsenic in edible tissues was:liver>kidney>muscle.The depletion rates of total arsenic in feces and urine were 0.13d~(-1) and 0.11d~(-1), respectively.This indicated the rate of depletion of total arsenic in surface tissues was: feces>urine>hair.
     Urine and feces were selected as optimal surface tissue according to the rate of depletion.In fast elimination phase,correlation equation for urine vs.kidney,urine vs. liver,feces vs.kidney and feces vs.liver were y=1.01x+326.7,y=1.90x+448.9,y= 0.26x+605.1 and y=6.43x-2624.7,respectively,correlation coefficients for urine vs. kidney,urine vs.liver,feces vs.kidney and feces vs.liver were 0.9916,0.9784,0.9763 and 0.9902,respectively;In slow elimination phase,correlation equation for urine vs. kidney,urine vs.liver,feces vs.kidney and feces vs.liver were y=2.75x+23.28 and y= 5.04x-6.33,yk=0.97x+83.1 and yL=1.83x-207.8,respectively,correlation coefficients for urine vs.kidney,urine vs.liver,feces vs.kidney and feces vs.liver were 0.9973,0.9960,0.9946 and 0.9724,respectively.The result of F-test of regression analysis was shown to be significant(P<0.01).The result of F-test of estimated and measured concentrations was shown to be non-significant(P>0.05).There was no correlation for urine or feces vs.muscle.
     These two methods are enough simple and sensitive.At the same time,it can provide the reference of determination of other organic-arsenic compound in other edible animal. The experiment of depletion studied the rule of depletion of arsenic in swine in detail. The correlation of urine vs.edible tissues and feces vs.edible tissues presented linear relationship,The result of F-test of regression analysis was shown to be significant (P<0.01).The result of t-test of estimated and measured concentrations was shown to be non-significant(P>0.05).Correlation date can guide the pre-slaughter detection in practice and has a high significance.
引文
1.陈小全,周鲁,周秀艳.生理药物动力学的研究进展.西南民族学院学报(自然科学版),2002,8(28):319-323
    2.陈小全,周秀艳,周鲁,左之利,苏怡.生理药物动力学模型参数的计算.烟台师范学院学报(自然科学版),2002,18(4):275-279
    3.郭文欣,李涛.喹乙醇在肉鸡体内的组织动力学与残留研究.黑龙江畜牧兽医,1992,10:1-2
    4.胡功政,李涛.磺胺喹恶啉在肉鸡组织中的残留与组织动力学.东北农学院院报,1990,21(2):159-164 没有
    5.Francis CP Law,何绍雄.生理药代动力学模型的进展与应用.药学学报,1997,32(2):151-160
    6.黄显会,蔡勤仁,刘戎,陈杖榴.克伦特罗在猪组织和尿液中残留消除规律研究.动物毒物学,2003,18(1-2):32-37
    7.李银生,曾振灵.兽药残留的现状与危害.中国兽药杂志,2002,36(1):29-33
    8.李尚波,麦波,李兆仁.畜禽十大高效饲料添加剂.辽宁科学技术出版社,2000,144-152 没查到
    9.李莎莎,陈卫东.原子荧光光谱法测定尿中痕量砷.理化检验-化学分册,2004,40(9):449-451
    10.刘晓东,邓宁,黄圣凯.生理模型同时预报普鲁卡因胺及其代谢物乙酰普鲁卡因胺在大鼠体内处置动力学.药学学报,1991,26(10):725-732 没全文
    11.刘志祥,吕明.高效液相色谱法测定饲料添加剂-洛克杀胂的含量.饲料博览,2003,2:20
    12.M.吉伯尔迪,D.佩里尔,朱家璧译.药物动力学.科学出版社出版(第二版),1987,340-341
    13.乔桂林,李涛.磺胺-6-甲氧嘧啶在肉鸡的组织动力学与残留量研究.畜牧兽医学报,1989,20(2):156-161
    14.孙永学,陈杖榴,陈展飞,刘志昌.洛克沙肿对鲫鱼暴露胁迫的毒性效应.华南农业大学学报,2004,25(2):101-104
    15.王金荣,张丽英,马永喜.饲料中洛克杀胂的固相萃取-高校液相色法检测技术 研究.饲料工业,2005,26(14):38-41 没有
    16.杨静化,张琪.马尔可夫药物动力学模型B.生物数学学报,1998,13(2):132-135
    17.杨静化.生理房室药动学模型.生物数学学报,1999,14(4):440-444
    18.杨莉丽,张德强,高英,张艳欣,苑春刚,孙汉文.氢化物发生-原子荧光光谱法测定中草药中的微量砷.分析试验室,2003,2:57-60
    19.杨莉丽,李娜,张德强,康海彦,高丽荣.原子荧光光谱法同时测定感冒冲剂中的砷和锑.微量元素与健康研究,2003,20(5):41-43
    20.张秀英,佟恒敏,郭文欣.单诺沙星在雏鸡体内的组织动力学及残留.中国兽医学报,2003,23(1):72-74
    21.周仁清.脂溶性污染物动力学的多室生理模型.环境保护科学,1989,15:54-57没有找到
    22.Achenbach T,Abendini S,Cox W,Law F C P.Development of a physiologically based pharmacokinetic(PBPK) model for oxytetracycline in cattle.Toxicology Science,1998,42:140 没查到
    23.Aerts M M L,Hogenboom A C,Brinkman U A T h.Analytical strategies for the screening of veterinary drugs and their residues in edible Products.Journal of Chromatography B,1995,667:1-40 没有
    24.Arnold H L,Odam R B,James W D.Disease of the skin Clinical Dermatology,8th ed,Saunders W B Company,Philadelphia 1990,121 没有
    25.Ashworth R,B,Epstein R L,Thomas M H,Frobish L T.Sulfamethazine blood/tissue correlation study in swine.American Journal of Veterinary Research,1986,47:2596-2603 有摘要
    26.Atkinson A J,Daniels C E,Dedrick R L,Grudzinskas C V,Markey S P.Clinical Pharmacokinetics.In Principles of Clinical Pharmacology.Academic Press,New York,2001:9-17 没有
    27.Benko V,Dobisova A,Macaj M.Arsenic in the hair of a non-occupationally exposed population.Atmospheric Environment,1971,5:275 有传送
    28.Blanca J,Mu~noz P,Morgado M,M'endez N,Aranda A,Reuvers T,Hooghuis H.Determination of clenbuterol,ractopamine and zilpaterol in liver and urine by liquid chromatography tandem mass spectrometry.Analytical Chimica Acta,2005,529: 199-205
    29. Brocklebank J R, Namdari R, Law F C. An oxytetracycline residue depletion study to assess the physiologically based pharmacokinetics (PBPK) model in farmed Atlantic salmon. Canadian Veterinary Journal, 1997, 38: 645-646
    30. Buzalaf M A R, Fukushima R, Granjeiro J M, Paulo J A C B S. Correlation between plasma and nail fluoride concentration in rats given different levels of fluoride in water. Fluoride, 2000, 35: 185-192
    31. Calvert C C, Smith L W. Arsenic in tissues of sheep and milk of dairy cows fed arsanilic acid and 3-ntrio-4-hydroxyphenylarsonic acid. Journal of Animal Science, 1981, 51(2): 414-421
    32. Campell D J. Drug residues in animal tissues and their regulation significance. Journal of AOAC International, 1978, 61(5): 1194-1197
    33. Carrasquilla M H. Gas chromatography-mass spectrometry analysis of anabolic compounds in bovine hair: evaluation of hair extraction procedures. Analytical Chimica Acta, 2001,434: 59-66
    34. Carrero P, Malavé A, Burguera J L, Burguera M, Rondón C. Determination of various arsenic species by flow injection hydride generation atomic absorption spectrometry: investigation of the effects of the acid concentration of different reaction media on the generation of arsines. Analytical Chimica Acta, 2001, 438: 195-204 没有
    35. Chen K L and Chiou P W S. Oral treatment of mule ducks with arsenicals for inducing fatty liver. Poultry Science, 2001, 80: 295-301 没有
    36. Chiou P W S, Chen K L, Yu B. Effects of roxarsone on performance, toxicity, tissue accumulation and residue of eggs and excreta in laying hens. Journal of Science Food Agriculture, 1997, 74: 229-236
    37. Chiesa O A, Bredow J V, Heller D, Nochetto C, Smith M, Moulton K, Thomas M. Bovine kidney tissue/biological fluid correlation for penicillin. Journal of Veterinary Pharmacology and Therapeutics, 2006, 29: 299-306
    38. Chiesa O A, Bredow J V, Heller D, Nochetto C, Smith M, Moulton K, Thomas M. Use of tissue-fluid correlations to estimate gentamicin residues in kidney tissue of Holstein steers. Journal of Veterinary Pharmacology and Therapeutics, 2006, 29: 99-106.
    39. Christopher A, Loffredo H, Aposhian V, Cebrian E M, Yamauchi H, and Silbergeld K E. Variability in human metabolism of arsenic. Environmental Research, 2003, 92: 85-91 没有
    40. Coelho N M M, Silva A C D, Silva C M D. Determination of As (III) and total inorganic arsenic by flow injection hydride generation atomic absorption spectrometry. Analytical Chimica Acta, 2002, 460: 227-233
    41. Craigmill A L. A physiologically based pharmacokinetics model for oxytetracycline residues in sheep. Journal of Veterinary Pharmacology and Therapeutics, 2003, 26: 55-63
    42. Croteau L G, Akhtar M H, Belanger J M R, Pare J R J. High performance liquid chromatography determination following microwave assisted extraction of 3-nitro-4-hydroxyphenylarsonic acid from swine liver, kidney, and muscle. Journal of Liquid Chromatography, 1994, 17: 2971
    43. David W. Disposition of sulfonamide in food producing animals. American Journal Veterinary Research, 1977, 38(7): 967-972
    44. Dean J R, Ebdon L, Foulkes M E, Crews H M, Massey R C. Determination of the growth promoter, 4-Hydroxy-3-Nitrophenylarsonic acid in chicken tissue by coupled high performance liquid chromatography-inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 1994, 9: 615
    45. Dickson P H, Lind A, Studts P, Nipper H C, Makoid M. The routine analysis of breast milk for drugs of abuse in a clinical toxicology laboratory. Journal of Forensic Science, 1994, 39: 207-214
    46. Dongen E W V, Nouws J F M. A comparative study on plasma disposition and residues of oxytetracycline and doxycycline in veal calves and pigs following oral administration. European Residue, 1993, II, 272-273
    47. Edmonds M S, Baker D H. Toxic effects of supplemental copper and roxarsone when fed alone or in combination to young pigs. Journal of Animal Science, 1986, Aug, 63(2): 533-7
    48. Ellenhorn M J. Arsenic, in Ellenhorn's Medical Toxicology: Diagnosis and Treatment of Human Poisoning, 1997: 1538
    49. Epstein R L, Ashworth R B. Tissue sulfonamide concentration and correlation in turkeys. American Journal of Veterinary Research, 1989, Jun, 50(6): 926-928
    50. Ferslew K E and Edds G T. Effects of arsanilic and on growth, serum enzymes, hematologic values and residual arsenic in young swine. American Journal of Veterinary Research, 1979,40: 1365-1369
    51. Gaillard Y, Pe'pin G. Testing hair for pharmaceuticals. Journal of Chromatography B, 1999,733:231-246
    52. Gleixner A, Sauerwein H, Meyer H H D, Detection of the anabolic beta 2-adrenoceptor agonist clenbuterol in human scalp hair by HPLC/EIA. Clinical Chemistry, 1996,42: 1869-1871.
    53. Haddad S, Withey J, Lapare S, Law FCP, Krishnan K. Physiologically-based pharmacokinetic modeling of pyrene in the rat. Environmental Toxicology and Pharmacology, 1998, 5: 245-255
    54. Hauwe O V D, Dumoulin F, Elliott C, Peteghema C V. Detection of synthetic glucocorticoid residues in cattle tissue and hair, samples after a single dose administration using LC-MS/MS. Journal of Chromatography B, 2005, 817:215-223
    55. Jackson B P, Bertsch P M. Determination of arsenic speciation in poultry wastes by IC-ICP-MS. Environment Science Technology, 2001, 35: 4868
    56. Keer J. The toxicosis experimental of 3-nitro-4-hydroxyphenylarsonic acid. Veterianry Pathology, 1985, 23: 354-61
    57. Kennedy S, Rice D A, Cush P F. Neuropathology of experimental 3-nitro-4-hydroxyphenylarsonic acid toxicosis in pigs. Veterinary Patholog, 1986, Jul, 23(4): 454-61
    58. Kim I, Barnes A J, Oyler J M, Schepers R, Joseph R E, Cone E J, Lafko D, Moolchan E T, Huestis M A. Plasma and oral fluid pharmacokinetics and pharmacodynamics after oral codeine administration. Clinical Chemistry, 2002, 48: 1486-1496
    59. Killelea R D, Joseph H, Aldstadt III. Solid-phase microextraction method for gas chromatography with mass spectrometric and pulsed flame photometric detection: studies of organoarsenical speciation. Journal of Chromatography A, 2001, 918: 169 -175
    60. Krishnan K, Andersen M E. Physiologically-based pharmacokinetic modeling in toxicoloy. Principles and Methods in Toxicology, 1994, 149-187
    61. Laurentie M, Chapel A M, Sanders P. New aspects in tissue residue depletion: use of a physiological based pharmacokinetics approach or population pharmacokinetics approach. www.euroresidue.nl/ER_IY/Contributions%20718-722.Pdf
    62. Law F C P. A physiologically based pharmacokinetics model for predicting the withdrawal period of oxytetracycline in culture Chinook Salmon (Onchorhynchus tshawytscha). In Xenobiotics in Fish. Eds Smith D, Gingerich WH, Beconi-Barker MG, 105-121. Kluwer Academic/Plenum Publishers, New York 已查到
    63. Law F C P, AbedinS i, Kenedy C J. A biologically based toxicokinetic model for pyrene in rainbow trout. Toxicology Applied Pharmacology, 1991, Sep, 110: 390-402 没全文
    64. Liu Z F, Sun H W, Shen SH G, Li L Q, Shi HM. Simultaneous determination of total arsenic and total selenium in Chinese medicinal herbs by hydride generation atomic fluorescence spectrometry in tartaric acid medium. Analytical Chimica Acta, 2005, 550: 151-155
    65. Mandal B K, Suzuki K T. Arsenic round the world: a review. Talanta, 2002, 58: 201-235 没找到
    66. Meijer L A, Ceyssens K G, Jong W T D, Greve B T D. Correlation between tissue and plasma concentrations of oxytetracycline in veal calves. Journal of Toxicology Environment Health, 1993,40: 35-45 有全文
    67. Melvin E. Development of physiologically based pharmacokinetic and physiologically based pharmacodynamic models for applications in toxicology and risk assessment .Toxicology Letters, 1995, 79: 35-44 没全文
    68. Mercer H D, Baggot J D, Sams R A J. Application of pharmacokinetic methods to the drug residue Profile. Journal of Toxicology and Environmental Health, 1971, 2: 787-801 没全文
    69. Montesinos P C, Cervera M L, Pastor A, Guardia M. Determination of arsenic and antimony in milk by hydride generation atomic fluorescence spectrometry. Talanta, 2003, 60: 787-799
    70. Moody J P, Williams R T. The metabolism of 4-hydroxyl-3-nitrophenylarsonic acid in hens. Food Cosmetic Toxicology, 1964, 2: 707 fal
    71. Nouws J F M and Ziv G. Pre-slaughter withdrawal times for drugs in dairy cows. Journal of Veterinary Pharmacology and Therapeutics, 1978, 1: 47-56
    72. Nouws J F M and Ziv G. Chap III tissue distribution and residues of beta-lactam antibiotics in normal dairy cows. Tissue Distribution and Residues of Some Antimicrobial Drugs in Normal and Emergency-Slaughtered Ruminants Meeting of 13 April 1978 at the University of Utrecht. University of Utrecht, The Netherlands
    73. Pergantis S A, Winnik W, Betowski D. Determination of ten organoarsenic compounds using microbore high-performance liquid chromatography coupled with electrospray mass spectrometry-mass spectrometry. Journal of Analytical Atomic Spectrometer, 1997,12: 531
    74. Polzer J, Stachel C, Gowik P. Treatment of turkeys with nitroimidazoles impact of the selestion of target analytes and matrices on an effective residue control. Analytical Chimica Acta, 2004, 521: 189-200
    75. Raab A, Hansen R H, Zhang L Y. Arsenic accumulation and speciation analysis in wool from sheep exposed to arsenosugars. Talanta, 2002, 58: 67-76
    76. Robert E, Davidson S. Determination of roxarsone in feeds using solid phase extraction and HPLC-UV. Journal of AOAC International, 1993, 76(5): 956-961
    77. Roerdink R A, Joseph H, Aldstadt III. Sensitive method for the determination of roxarsone using solid-phase microextraction with multi-detector gas chromatography. Journal of Chromatography A, 2004,1057: 177-183
    78. Rosal G C, Momplaisir G M, Heithmar M E. Roxarsone and transformation Products in chicken manure: Determination by capillary electrophoresis-inductively coupled plasma mass spectrometry. Electrophoresis, 2005, 26: 1606-1614
    79. Running H T, Einarsen K, Asp T N. Determination of chloramphenicol residues in meat, seafood, egg, honey, milk, plasma and urine with liquid chromatography-tandem mass spectrometry, and the validation of the method based on 2002/657/EC. Journal of Chromatography A, 2006, 1118: 226-233
    80. Sachs H, Kintz P. Testing for drugs in hair critical review of chromatographic procedures since 1992. Journal of Chromatography B, 1998, 713: 147-161
    81. Sangiorgi E, Polignano V, Gardini S. Boldenone and related hormones quantification by liquid chromatography-mass spectrometry in urine and faeces after calf administration of boldenone undecanoate. Analytical Chimica Acta, 2005, 529: 239-248
    82. Smith H. The interpretation of the arsenic content of human hair. Journal Forensic Science Society, 1964,4: 192
    83. Stabler C A H, Pesce A J, Cannon D J. Urine drug screening in the medical setting. Clinical Chimica Acta, 2002, 315: 125-135
    84. Sun H W, Qiao F X, Suo R, Li L X, Liang SH X. Simultaneous determination of trace arsenic(III), antimony(III), total arsenic and antimony in Chinese medicinal herbs by hydride generation-double channel atomic fluorescence spectrometry. Analytical Chimica Acta, 2004, 505: 255-261
    85. Szostek B, Joseph H, Aldstadt III. Determination of organoarsenicals in the environment by soild-phase microextration-gas chromatography-mass spectrometry. Journal of Chromatography A, 1998, 807: 253-263
    86. Walker C C, Thune R L, Barker S A. Plasma/muscle ratios sulfadimethoxine residues in channel catfish (Ictalurus Punctatus). Journal of Veterinary Pharmacology and Therapeutics, 1995,18(4): 306-310
    87. Wrobel K, Parker B, Kannamkumarath S S, Caruso J A. Determination of As(III), As(V), monomethylarsonic acid, dimethylarsinic acid and arsenobetaine by HPLC-/ICP-/MS: analysis of reference materials, fish tissues and urine. Talanta, 2002, 58: 899-/907
    88. Wise O R, Hartley W J. The toxic effects of roxarsone on turkey. Research of Veterinary Science, 1974,16: 336-340 没打到
    89. Winecker R E, Goldberger B A, Tebbett I R, Behnke M, Eyler F D, Karlix J L, Wobie K, Conlon M, Phillips D, Bertholf R L. Detection of cocaine and its metabolites in breast milk. Journal of Forensic Sciences, 2001, 46:
    90. Wershaw R L, Rutherford D W, Rostad C E, Garbarino J R, Ferrer I, Kennedy K R, Momplaisir G M, Grange A. Mass spectrometric identification of an azobenzene derivative produced by smectite-catalyzed conversion of 3-amino-4-hydroxyphenylarsonic acid. Talanta, 2003, 59: 1219-1226

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700