用户名: 密码: 验证码:
草鱼早期发育阶段细菌群落的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以草鱼(Ctenopharyngodon idellus)为研究对象,对早期发育阶段(胚胎期、仔鱼期、稚鱼期及幼鱼期)细菌群落进行了研究,同时对水体及饵料的菌群进行了研究。
     一、草鱼受精卵阶段:分别在受精(受精后0.0 h)、卵裂期(受精后2.0 h)、囊胚期(受精后7.0h)、器官分化期(受精后15.5 h)和出膜前(受精后23.5 h)取样。结果表明:
     1.草鱼受精卵菌群的数量随受精卵的发育呈递增趋势,刚受精时受精卵的细菌数量为1.24×10~1 cfu/egg,出膜前增加到1.41×10~5 cfu/egg。随受精卵的发育,受精卵的优势菌群先为气单胞菌属、肠杆菌科、微球菌属和棒杆菌属,后为莫拉氏菌属和不动杆菌属。
     2.水体中细菌的数量相对稳定,为1.05×10~4 cfu/mL-3.85×10~4 cfu/mL,只在受精卵出膜前的阶段急剧增加,为1.32×10~6 cfu/mL。水体中的优势菌群为气单胞菌属、肠杆菌科和莫拉氏菌属。
     二、仔稚鱼期及幼鱼期:分别在孵出后未开口摄食及开口摄食后的1 d、3 d、7d、14 d、21 d、28 d、35 d、49 d、63 d、77 d取样。结果表明:
     1.开口摄食前没有检测到肠道细菌。开口摄食后,肠道好氧及兼性厌氧菌菌群、厌氧菌的数量随鱼类的发育呈递增趋势。食性转换后,肠道好氧及兼性厌氧菌菌群的数量基本稳定,但开口第63 d后,投喂人工饲料组肠道好氧及兼性厌氧菌数量略高于紫背浮萍组。食性转换后,厌氧菌数量继续增加,到开口摄食后49 d,基本达到稳定,不同的饵料对厌氧菌数量没有影响。草鱼早期发育阶段肠道好氧及兼性厌氧菌的优势菌群为气单胞菌属、肠杆菌科、弧菌属、不动杆菌属、莫拉氏菌属和棒杆菌属;厌氧菌的优势菌为双歧杆菌。在开口摄食第1 d到第14 d,肠道好氧及兼性厌氧菌的组成种类逐渐增多。食性转换后,投喂浮萍组草鱼肠道好氧及兼性厌氧菌组成比例发生了变化,莫拉氏菌属、不动杆菌属和黄杆菌属所占的比例先上升后下降,气单胞菌属和肠杆菌科所占的比例先下降后上升,最后和投喂饲料组草鱼肠道好氧及兼性厌氧菌组成比例相当。厌氧菌的优势菌属为双歧杆菌。
     2.水体中细菌的数量在草鱼食性转换前比较稳定。食性转换后,人工饲料组水体细菌数量有所增加;紫背浮萍组水体细菌数量较稳定。草鱼早期发育过程中,水体中好氧及兼性厌氧菌的优势菌属为气单胞菌属、肠杆菌科、弧菌属、莫拉氏菌属、不动杆菌属和黄杆菌属。鱼类食性转换后,水体中细菌的组成比例有所改变,气单胞菌属、肠杆菌科和弧菌属所占的比例有所下降,不动杆菌属、莫拉氏菌属和黄杆菌属所占的比例有所上升。
     3.浮游动物(主要为枝角类)中所含的细菌的数量为1.6×10~7 cfu/g,紫背浮萍中细菌的数量为1.24×10~7 cfu/g,人工饲料中的没有检测到细菌。浮游动物(主要为枝角类)的优势菌群为气单胞菌属、肠杆菌科、弧菌属、棒杆菌属。紫背浮萍的优势菌群为肠杆菌科、黄杆菌属、气单胞菌属、不动杆菌属、莫拉氏菌属。
     草鱼受精卵菌群与水体菌群有关;早期阶段肠道菌群与水体、饵料中的菌群有关。
The succession of bacterial flora in the early life stages(egg,larvae,juvenile and young) of grass carp(Ctenopharyngodon idellus) was invested.Meanwhile,the bacterial flora of water and food were also studied.
     At egg stage:The bacteria flora was detected at fertilizing(0.0 h after fertilizing),the cleavage period(2.0 h after fertilizing),the blastocyst stage(7.0 h after fertilizing),the organ differentiation period(15.5 h after fertilizing) and before hatching(23.5 h after fertilizing),respectively.The results showed that:
     1.The number of bacterial flora was increased with the development of eggs after fertilizing,the number was 1.24x10~1 cfu/egg at fertilizing,and it was increased to 1.41x10~5 cfu/egg before hatching.With the development of eggs,the predominant bacterial flora of eggs was Aeromonas,Enterobacteriaceae,Micrococcus and Corynebacterium,later,the predominant bacterial flora of eggs was Moraxella and Acinetobacter.
     2.The number of bacterial flora in water was stable,which was 1.05x10~4-3.85x10~4 cfu/mL.But the number was rapidly before hatching,which was 1.32x10~6 cfu/mL in water.The predominant bacteria flora in water was Aeromonas,Enterobacteriaceae and Moraxella.
     At larvae,juvenile and youny stege:The intestinal bacteria was detected at non-feeding stage,1d,3d,7d,14d,21d,28d,35d,49d,63d and 77d after feeding,respectively. The results showed that:
     1.The bacterial flora was not detected at non-feeding stage.The number of aerobic and facultative anaerobic,anaerobic intestinal bacteria was increased with the development of grass carp after feeding.After diet conversion,the number of intestinal aerobic facultative anaerobic bacteria was stable,but at 63d after feeding,the number of aerobic and facultative anaerobic intestinal bacteria in the group which was feeded with artificially formulated food group were slightly higher than that of duckweed(Spirodela polyrhiza) group.After diet conversion,the number of anaerobic intestinal bacteria continued to increase,at 49 d after first feeding,the number was stable,and it was not affected by different diets.The predominant aerobic and facultive anaerobic intestinal bacteria was Aeromonas,Enterobacteriaceae,Vibrio,Acinetobacter,Moraxella, Corynebacteriurn in the early development of grass carp.Form ld to 14d after first feeding,the composition species of aerobic and facultive anaerobic intestinal bacteria were gradually increased.After diet conversion,the composition proportion of aerobic and anaerobic intestinal bacteria was changed which was feeded with duckweed.The percentage of Moraxella and Acinetobacter was increased at first then decreased, Aeromonas and Enterobacteriaceae was inversely correlated.Fininly,the composition proprotion of aerobic and anaerobic intestinal bacteria was considerate to the group that was feeded artificially formulated food.The predominant facultive anaerobic intestinal bacteria was Bifidobacterium.
     2.The number of bacterial flora in water was relatively stable before and after diet conversion.After diet conversion,the number of bacteria in water was increased which was feeded with artificial diet,but it was stable which was feeded duckweed.During the early development of grass carp,the predominant aerobic and facultive anaerobic in water was Aeromonas,Enterobacteriaceae,Vibrio,Moraxella,Acinetobacter and Flavobacterium.After diet conversion,the composition of bacteria in water was changed, the proportion of Aeromonas,Enterobacteriaceae and Vibrio decreased,and the proportion of Moraxella,Acinetobacter and Flavobacterium increased.
     3.The bacteria number of zooZooplankton(mainly cladocera) was 1.6×10~7 cfu/g, and that of duckweed was 1.24×10~7 cfu/g.There was no bacterial detected in artificially formulated food.The predominant bacteria of Zooplankton was Aeromonas, Enterobacteriaceae,Vibrio,Corynebacterium,the predominant bacteria of duckweed was Enterobacteriaceae,Flavobacterium,Aeromonas,Acinetobacter,Moraxella.
     The bacterical flora of grass carp eggs was related to the bacterial flora in water,the intestinal bacterical flora of the early stages of grass carp was related to the bacterial flora of water and food.
引文
1.曹志华,易万军,罗静波.尿素对鲤鱼消化道菌群的影响.湖北农学院学报,2001,21(3):226-228
    2.陈红莲.投喂阿维拉霉素和甲基盐霉素对鲤肠道菌群的影响.[硕士学位论文].武汉:华中农业大学,2006
    3.陈向东.二龄草鱼发病机理.鱼病简讯,1986,3:5-9
    4.陈孝煊,吴志新,刘毅辉,高海章.呋喃唑酮对草鱼肠道菌群的影响.水利渔业,1999,19(3):34-35
    5.陈孝煊,吴志新,罗宇良,高海章,陈喜群.呋喃唑酮对饲养水及草鱼体表粘液中菌群的影响.华中农业大学学报,1999,18(1):68-71
    6.陈孝煊,吴志新,周文豪.鱼类消化道菌群的作用与影响因素研究进展.华中农业大学学报,2005,24(5):523-528
    7.陈勇,黄权,李月红,赵静.溢康素对鲤鱼肠道菌群生长的影响.华北大学学报,2001,2(5):441-443
    8.丁贤,李卓佳,陈永青,林黑着,杨莺莺,杨坚.芽孢杆菌对凡钠对虾生长和消化酶活性的影响.中国水产科学,2004,11(6):580-584
    9.樊海平,曾占壮,林煜,钟全福,余培建,翁祖桐.养殖欧洲鳗鲡肠道菌群组成的研究.浙江农业学报,2006,18(3):176-178
    10.何明清.动物微生态学.北京:中国农业出版社,1994,40-50
    11.康白.微生态学.第1版.大连:大连出版社,1988:209
    12.康白.与正常微生物群有关的新概念.中国微生态学杂志,1992,4(4):1-5
    13.李莉,陈孝煊.投喂板蓝根、大黄对草鱼肠内细菌的影响.内陆水产,2002,8:35-37
    14.李莉.中草药对草鱼肠道菌群及免疫机能的影响.[硕士学位论文].武汉:华中农业大学,2003
    15.刘伟,陈军,潘伟志,尹洪滨,张秀梅.怀头鲇成熟卵膜表面扫描电镜观察.动物学报,2005,51(5):940-946
    16.罗琳,陈孝煊,蔡雪峰.穿心莲对草鱼肠内细菌的影响.水产学报,2001,25(3):232-237
    17.罗璋.斑点叉尾鮰肠道益生菌的筛选与特性研究.[硕士学位论文].武汉:华中农业大学,2007
    18.倪达书,汪建国.草鱼生物学与疾病.北京:科学出版社,1998,1-30
    19.斯克尔曼.细菌属的鉴定指导.蔡妙英,凌代文,战立克,等,译.北京:科学出版社,1978:134-145
    20.宋增福,吴天星.鱼类肠道正常菌群研究进展.水产科学,2007,26(8):471-474
    21.覃映雪,王晓林,鄢庆枇,于贇,叶冬风.青石斑鱼肠道菌群研究.海洋水产研究,2007,28(5):18-23
    22.汤伏生,曾勇,张兴忠,朱小燕.鱼类细菌群落中的嗜水气单胞菌.水产学报,1995,19(4):369-373
    23.唐振亚.人体肠道埃希氏大肠杆菌(Escherichia coli):有利、有害、还是毫无意义?德国医学,1991:8(4):223-224
    24.王红宁,何明清,柳平,胡廷秀,陈孝跃.鲤肠道正常菌群的研究.水生生物学报,1994,18(4):354-359
    25.徐伯亥,熊木林,韩先朴.二龄草鱼肠炎病的研究.水生生物学报,1987,11(1):73-82
    26.许蓉.芽孢杆菌对鱼类免疫机能的影响.[硕士学位论文].武汉:华中农业大学,2005
    27.杨莺莺,李卓佳,林亮,郭志勋.人工饲料饲养的对虾肠道菌群和水体细菌区系的研究.热带海洋学报,2006,25(3):53-56
    28.尹军霞,陈瑛,邵健忠,刘雪珠,寿颖颖.三角帆蚌肠道菌群的研究.浙江大学学报,2006,33(2):211-215
    29.尹军霞,陈瑛,张信娣,俞芸芸.光合细菌对三角帆蚌肠道菌群及对蚌体生长的影响,浙江大学学报,2007,33(3):311-315
    30.尹军霞,张建龙,沈文英,石巧红,顾海凤.鱼食性与肠道菌群关系的初步研究.水产科学,2004,23(3):4-6
    31.周文豪,陈孝煊,陈昌福.投喂氯霉素和土霉素后草鱼肠道菌群变化.华中农业大学学报,1997(增刊):91-100
    32.祝玲,杨吉霞,蔡俊鹏,余德民.近江牡蛎肠道细菌及其产酶能力.湛江海洋大学学报,2005,25(2):10-13
    33.Barker G A,Smith S N,Bromage N R.Commensal bacteria and their possible relationship to the mortality of incubating salmonid eggs.Journal of Fish Diseases,1991,14:199-210
    34.Barker G A,Smith S N,Bromage N R.The bacterial flora of rainbow trout,Salmo gairdneri Richardson,and brown trout,Salmo trutta L.eggs and its relationship to developmental success.Journal ofFish Diseases,1989,12:281-293
    35.Beatriz M,Mafia P C.Bacteria associated with sardine(Sardina pilchardus) eggs in a natural environment(Ria de Vigo,Galicia,northwestern Spain).FEMS Microbiology Ecology,2003,44:329-334
    36.Bell G R,Hoskins G E,Hodgkiss W.Aspects of the characterization,identification,and ecology of the bacterial flora associated with the surface of stream-incubated pacific salmon (Oncorhynchus) eggs.Journal Fish Research Board of Canada,1971,28:1511-1525
    37.Bell G R.On the microbial flora of stream-incubated eggs of the pacific salmon(Oncorhynchus). Bull Off Int Epizoot, 1966,65: 769-776
    
    38. Bergh O, Naas K E, Harboe T. Shift in the intestinal microflora of Atlantic halibut (Hippoglossus hippoglossus) larvae during first feeding. Canadian Journal of Fisheries and Aquatic Sciences, 1994,51(8): 1899-1903
    
    39. Bergh O. Bacteria associated with early life stages of halibnut Hippoglossus hippoglossus inhibit growth of a pathogenicn Vibrio sp. Journal of Fish Diseases, 1995(18): 31 -40
    
    40. Bergh O, Naas K E, Harboe T. Shift in the intestinal microflora of Atlantic halibut (Hippoglossus hippoglossus) larvae during first feeding. Canadian Journal of Fisheries and Aquatic Sciences. 1994,51(8): 1899-1903
    
    41. Berntsen D O, Helvik J V, Walther B. The major structural proteins of cod (Gadus morhua) eggshells and protein crosslinking during teleost egg hardening. Developmental Biology, 1990, 137:258-265
    
    42. Blanch A R, Alsina M, Simon M, Jofre J. Determination of bacteria associated with reared turbot (Scophthalmus maximus) larvae. Journal of Applied Microbiology, 1997, 82: 729-734
    
    43. Brown L L, Cox W T, Levine R P. Evidence that the causal agent of bacterial cold-water disease Flavobacterium psychrophilum is transmitted within salmonid eggs. Disease of Aquatic Organisms, 1997,29: 213-218
    
    44. Campbell A C, Buswell J A. The intestinal microflora of farmed Dover sole (Solea solea) at different stages offish development. Journal of applied bacteriology, 1983, 55(2): 215-223
    
    45. Cipriano R C, Ford L A, Teska J D. Association of Cytophaga psychrophila with mortality among eyed eggs of Atlantic salmon (Salmo salar). Journal of Wildlife Diseases, 1995, 31: 166-171
    
    46. Cone D K. A Lactobacillus sp. from diseased female rainbow trout, Salmo gairdneri Richardson, in Newfoundland, Canada. Journal of Fish Diseases, 1982, 5: 479-485
    
    47. Conway P L, Maki J, Mitchell R, Kjelleberg S. Starvation of marine flounder, squid and laboratory mice and its effect on the intestinal microbiota. FEMS Microbiology Ecology, 1986, 38: 187-195
    
    48. Dannevig A. Biology of Atlantic waters of Canada.Canadian fish-eggs and larvae. Canadian Fisheries Expedition, 1914-1915. Department of Naval Services, Ottawa, Canada, 1919: 1-74
    
    49. David WV J, Robin J S, Ian R B, Harry T B. Changes in the gut-associated microflora during the development of Atlantic halibut (Hippoglossus hippoglossus L.) larvae in three British hatcheries. Aquaculture, 2003, 219: 21-42
    
    50. Evelyn T P T, Ketcheson J E, Prosperi-Porta L. Further evidence for the presence of Renibacterium salmoninarum in salmonid eggs and for the failure of povidone-iodine to reduce the intra-ovun infection rate in water-hardened eggs. Journal of Fish Diseases, 1984,7(3): 173-182
    
    51. Freter R. Mechanisms of association of bacteria with mucosal surfaces. CIB A Found Symp, 1981, 80: 36-55
    
    52. Gatesoup F J. The contiouous feeding of turbot larvae, Scophthlmus maximus, and control of the bacterial environment of rotifers. Aquaculture. 1990,89:139-148
    
    53. Geir H V, Hansen, Ellen S M, Olasen J. Effect of different holding regimens on the intestinal microflora of herring (Clupea harengus) larvae. Applied and environmental microbiology, 1992, 58(2): 461-470
    
    54. Grisez L, Reyniers J, Verdonk L, Swings J, Ollevier F. Dominant intestinal microflora of sea bream and sea bass larvae, from two hatcheries, during larval development. Aquaculture, 1997, 155: 387-399
    
    55. Hameed A S. Quality of eggs produced from wild and captive spawners of Penaus indicus H. Milne Edwards and their bacterial load. Aquatic Research, 1997,28: 301-303
    
    56. Hamid S K. Microflora in the alimentary tract grey mullet. IV estimation of enzyme activities of the intestinal bacteria. Bullentin of the Japanese Society of Scientific Fisheries, 1979 (V): 45-99
    
    57. Hansen G H, Bergh O, Michaelsen J, Knappskog D. Flexibacter ovolyticus sp. nov., a pathogen of eggs and larvae of Atlantic halibut, Hippoglossus hippoglossus L. Int J Syst Bacteriol, 1992, 42:451-458
    
    58. Hansen G H, Olafsen J A. Bacterial colonization of cod (Gadus morhua L.) and halibut (Hippoglossus hippoglossus) eggs in marine aquaculture. Applied and Environmental Microbiology, 1989,55: 1435-1446
    
    59. Hansen G H, Olafsen J A. Bacterial interactions in early life stages of marine cold water Fish. Microbial Ecology, 1999, 38(1): 1-26
    
    60. Hansen G H, Olafsen J A. Leucothrix mucoren skadelig pavekstorganisme i intensivt marint oppdrett. Norsk Fiskeoppdrett, Norwegian, 1988, 7:62-63
    
    61. Haruo S, Ryuji O, Yukiko S, Akiyama N and Matsuura S. Antibacterial abilities of intestinal bacteria from larval and juvenile Japanese flounder against fish pathogens. Fisheries Science, 2002, 68(5): 1444-2906
    
    62. Hempel G. Early life history of marine fish. Washington: University of Washington Press, 1979: 1-20
    
    63. Holt J G, Krieg N R, Sneath P H A, Staley J T, Williams S T. Bergy's manual of deteminative bacteriology. Baltimore: Williams and Wilkins, 1994: 175-255
    
    64. Horsley R W. A review of the bacterial flora of teleosts and elasmobrachs, including methods for its analysis. Journal of Fish Biology, 1977,10: 529-553
    
    65. Huis int Veld J H J, Havenaar R, Marteau P. Establishing a scientific basis for probiotic R&D. Tibtech, 1994, 12:6-9
    66. Jaime R, Paola N. 16S rDNA-based analysis of dominant bacterial populations associated with early life stages of coho salmon (Oncorhynchus kisutch). Marine Biology, 2006, 51: 422-430
    67. Johnson P W, Sieburth J M, Sastry A, Arnold C R, Doty M S. Leucothrix mucor infestation of benthic Crustacea, fish eggs, and tropical algae. Limnol Oceanogr, 1971, 16: 962-969
    68. Keskin M, Keskin M, Rosenthal H. Pathways of bacterial contamination during egg incubation and larval rearing of turbot, Scophthalmus maximus. Journal of Applied Ichthyology, 1994, 10: 1-9
    69. Larsen J L. Vibrio anguillarum: prevalence of typical and a typical strains in marine recipients with special reference to carbohydrate pollution. Acta Veterinaria Scandinavica, 1985, 26: 449-460
    70. Lemos M L, Toranzo A E, Barja J L. Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds. Microbial Ecology, 1985,11: 149-163
    71. Lesel R. Microflore bacterienne du tractus digestif. In: Fontaine M ed., CNRS Paris: Nutrition des Poissons, 1981,89-100
    72. Lindsay G J H, Gooday G W. Chitinolytic enzymes and the bacterial microflora in the digestive tract of cod, Gadus morhua.. Journal of Fish Biology, 1985, 26: 255-265
    73. MacDonald N L, Stark J R, Austin B. Bacterial microflora in the gastro-intestinal tract of Dover sole (Solea solea L.), with emphasis on the possible role of bacteria in the nutrition of the host. FEMS Microbiol Letters, 1986, 35: 107-111
    74. Macey B M, Coyne V E. Improved growth rate and disease resistance in farmed Haliotis midae through probiotic treatment. Aquaculture, 2005, 245: 249-261
    75. MacFarlane R D, McLaughlin J J, Bullock G L. Quantitative and qualitative studies of gut flora in striped bass from estuarine and coastal environments. Journa Wildlife Disease, 1986, 22: 344-348
    76. Mangor J A, Adoff G R. Drinking activity of the newly hatched larvae of cod Gadus morhua L. Fish PhysiolBiochem, 1987, 3: 99-103
    77. Margolis L. The effect of fasting on the bacterial flora of the intestine of fish. Journal of the Fisheries Research Board of Canada, 1953, 10(2): 62-63
    78. Moriaty D J W. Interactions of microorganisms and aquaticanimals, particularly the nutritional role of the gut flora. Lesel R ed., Microbiology in Poecilot herms. Amsterdam: Elsevier, 1990, 217-222
    79. Munro P D, Barbour A, Birkbeck T H. Comparison of the gut bacterial flora of start-feeding larval turbot reared under different conditions. Journal of Applied Microbiology, 1994, 77: 560-566
    80. Muroga K, Higashi M, Keitoku H. The isolation of intestinal microflora of farmed red seabream (Pagrus major) and black seabream (Acanthopagrus schlegeli) at larval and juvenile stages. Aquaculture, 1987,65(1): 79-88
    81. Nicolas J L, Robic E, Ansquer D. Bacterial-flora associated with a trophic chain consisting of microalgae, rotifers and turbot larvae influence of bacteria on larval survival. Aquaculture. 1989, 83: 237-248
    82. Olafsen J A, Hansen G H. Intact antigen uptake in intestinal epithelial cells of marine fish larvae. Journal of Fish Biology, 1992,40: 141-156
    83. Olafsen J A. Ingestion of bacteria by cod (Gadus morhua L.) larvae. In: Dahl E, Danielsen DS, Moksness E, the intra-ovum infection rate in water-hardened eggs. Journal of Fish Diseases, 1984,7:173-182
    84. Olafsen J A. Interactions between fish larvae and bacteria in marine aquaculture. Aquaculture, 2001,200:223-247
    85. Onarheim A M, Wiik R, Burghardt J, Stackebrandt E. Characterization and identification of two Vibrio species indigenous to the intestine of fish in cold sea water; description of Vibrio iliopiscarius sp. nov. System Applied Microbiology, 1994,17: 370-379
    86. Panigrahia A, Kirona V, Puangkaewa J, et al. The viability of p robiotic bacteria as a factor influencing the immune response in rainbow trout Oncorhynchus mykiss. Aquaculture, 2005, 243: 241-254
    87. Rachel F, Ramirez BeverlyA. Enzyme production by obligate intestinal anaerobic bacteria isolated from oscars (Astronotus ocellatus), angel fish (Pterophyllum scalare) and southern flounder (Paralichthys lethostigma). Aquaculture, 2003, 227: 417-426
    88. Reitan K I, Natvik C M, Vadstein O. Drinking rate, uptake of bacteria and microalgae in turbot larvae. Journal of Fish Biology, 1998, 53: 1145-1154
    89. Reitan K I, Rainuzzo J R, Oie G, Olsen Y. Nutritional effects of algal addition in first-feeding of turbot (Scophthalmus maximus L.) larvae. Aquaculture, 1993, 118: 257-275
    90. Ringo E, Birkbeck T H. Intestinal microflora of fish larvae and fry. Aquaculture Research, 1999, 30(2): 73-93
    91. Ringo E, Gatesoupe F J. Lactic acid bacteria in fish: areview. Aquaculture, 1998, 160: 177-203
    92. Sakata T, Koreeda Y. A numerical taxonomic study of the dominant bacteria isolated from tilapia intestines. Bulletin of the Japanese Society of Scientific Fisheries, 1986, 52: 1625-1634
    93. Sakata T, Nakaji M, Kakimoto D. Microflora in the digestive tract of marine fish. I. General characterization of the isolates from yellow tail. Mem Fac Fish, Kagoshima University, 1978, 27: 65-71
    94. Sakata T, Okabayashi J, Kakimoto D. Variations in the intestinal microflora of Tilapia reared in fresh and sea water. Bulletin of the Japanese Society of Scientific Fisherie, 1980,46: 313-317
    95. Sakata T, Sugita H, Mitsuoka T, Kakimoto D, Kadota H. Characteristics of obligate anaerobic bacteria in the intestines of freshwater fish. Bulletin of the Japanese Society of Scientific Fisheries, 1981,47:421-427
    96. Sakata T. Microflora in the digestive tract of fish and shellfish. In: Lesel R ed., Microbiology in Poecilotherms. Amsterdam: Elsevier Science Publishers (Biomedical Division), 1990,171-176
    97. Schroder K, Clausen E, Sandberg A M, Raa J. Psychrotrophic Lactobacillus plantarum from fish and its ability to produce antibiotic substances. In: Connell J ed., Advances in Fish Science and Technology. England&Surrey: Fishing News Books Ltd, 1980,480-483
    98. Sera H, Ishida Y. Bacterial flora in the digestive tracts of marine fish-II .Changes of bacterial flora with time lapse after ingestion of diet. Bulletin of the Japanese Society of Scientific Fisherie. 1972, 38(6): 633-637
    99. Skjermo J, Salvesen I, Oie G, Olsen Y, Vadstein O. Microbially matured water: a technique for selection of a non-opportunistic bacterial flora in water that may improve performance of marine larvae. Aquaculture. 1997,5: 13-28
    100. Solemdal P. The Propagation of Cod Gadus morhua L., Institute of Marine Research, Flodevigen Biological Station, Arendal, Norway, 1984,627-643
    101. Strom E, Olafsen J A. The indigenous microflora of wild-captured juvenile cod in net-pen rearing. In: Lesel R ed., Microbiology in Poecilotherms. Amsterdam: Elsevier Science Publishers (Biomedical Division), 1990,181-185
    102. Sugita H, Fushino T, Oshima K. Microflora in the water and sediment of freshwater culture ponds. Bulletin of the Japanese Society of Scientific Fisheries, 1985, 51(1): 91-97
    103. Sugita H, Miyajima C, Deguchi Y. The vitamin B_(12)-producing ability of the intestinal microflora of freshwater fish. Aquaculture, 1991,92: 267-276
    104. Sugita H, Miyajima C. The vitamin B12 - producing ability of intestinal bacteria isolated from tilapia and channelcatfish. Bulletin of the Japanese Society of Scientific Fisherie, 1990, 56 (4): 701-704
    105. Sugita H, Shibuya K, Shimooka H, Deguchi Y. Antibacterial abilities of intestinal microflora in freshwater cultured fish. Aquaculture, 1996, 145: 195-203
    106. Sugita H, Tokuyama K, Deguchi Y. The intestinal microflora of carp Cyprinus carpio, grass carp Ctenopharyngodon idella and Tilapia Sarotherodon niloticus.Bulletin of the Japanese Society of Scientific Fisheries,1985,51:1325-1329
    107.Sugita H,Tsunohara M,Onishi T,Deguchi Y.The establishment of an intestinal microflora in developing goldfish(Carassius auratus) of culture ponds.Microbial Ecology,1988,15:333-344
    108.Tanasomwang V,Muroga K.Intestinal microflora of larval and juvenile stages in japanese flounder(Paralichthys olivaceus).Fish Pathology,1988,23(2):77-83
    109.Trust T J,Bull L M,Currie B R,Buckley J T.Obligate anaerobic bacteria in the gastrointestinal microflora of the grass carp(Ctenopharyngodon idella),goldfish(Carassius auratus),and rainbow trout(Salmo gairdneri).Journal of the Fisheries Research Board of Canada,1979,36:1174-1179
    110.Trust T J,Sparrow R A H.The bacterial flora in the alimentary tract of freshwater salmonid fishes.Canadian Journal of Microbiology,1974,20:1219-1228
    111.Trust T J.The bacterial population in vertical flow tray hatcheries during incubation of salmonid eggs.Journal of the Fisheries Research Board of Canada,1972,29:567-571
    112.Tytler P,Blaxter J H S.Drinking in yolk-sac stage larvae of halibut,Hippoglossus hippoglossus L.Journal offish Biology,1988,32:493-494
    113.Wostmann B.Immunology,including radiobiology and transplantation.Wostmann B S,Germfreeand gnotobiotic animal models.Boca Raton F L:CRC Press,1996,101-120
    114.Yoshimizu M T,Kimura,Sakai M.Microflora of the embryo and the fry of salmonids.Bulletin of the Japanese Society of Scientific Fisheries,1980,46:967-975
    115.Yoshimizu M,Kimura T.Study on the intestinal microflora of salmonids.Fish Pathology,1976,10:243-259
    116.#12
    117.#12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700