用户名: 密码: 验证码:
特异耐高温水稻N22开花期耐高温遗传基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球气候变暖,极端高温天气的频繁出现,高温热害已成为水稻生产的一个重要威胁。在高温条件下,水稻的生长发育、产量、品质等都受到严重影响,而开花期遇高温易导致结实率大幅下降严重影响产量,是当前最受关注的特性之一,培育开花期高温结实稳定性好的水稻新品种是减轻高温对产量影响的重要途径。特异耐高温水稻资源的筛选及其耐高温性的遗传基础研究可为高温生态适应性育种提供材料和理论支持。
     本研究以从国际水稻研究所(IRRI)种质基因库引进的不同年份收集保存的N22和国内优良恢复系蜀恢527、绵恢725、桂99为材料,以结实率为指标进行开花期耐热特性评价和利用SSR分子标记进行遗传差异分析,从中筛选出较好的材料;以桂99和N22-2006为亲本构建了300余株的F_2分离群体,用人工光温生长箱以相对结实率(高温处理结实率÷相应大田结实率×100)为指标进行开花期高温鉴定,采用分离集团混合分析法(BSA法),结合349个SSR分子标记,对水稻开花期耐热性相关QTL进行初步定位。主要研究结果如下:
     1.不同年份收集与保存的N22种质资源及国内常用恢复系耐高温性鉴定。开花期在33℃平均温度的植物生长箱中处理后的结实率方差分析表明:各材料耐高温性由大至小依次排列为:N22-2006、蜀恢527、N22-1996、绵恢725、桂99。不同年份的N22之间表现出了生长势、生育期和耐热性的差异,N22-1984生长势弱,开花期延后10天以上,没有参加高温鉴定,N22-1996的结实率比N22-2006低,但差异没有达到显著水平。
     2.利用349个SSR分子标记分析N22-1984、N22-1996、N22-2006间的DNA多态性,其中有76个标记在材料间表现出差异,差异率为21.8%。再利用这76个标记分析三份材料种植一代后多态性的变化情况,发现:N22-1984与N22-1996、N22-2006间的差异不变,N22-1996与N22-2006间的差异恢复。初步认为N22-1984存在种质差异,N22-1996与N22-2006间属通过自交可恢复的贮藏变异。
     3.在植物生长箱中32℃平均温度条件下处理亲本桂99、N22—2006(以下称为N22)及其F_2群体,桂99相对结实率平均值为0.6831%,N22为14.0121%,它们间差异达到极显著水平;F_2群体单株相对结实率表现为连续分布,介于0.00%~70.19%之间,平均值为4.89%,偏斜度3.23,峰度14.89,偏向于母本桂99。
     4.利用349个SSR分子标记分析桂99和N22间的多态性,有166个标记表现出差异性,具有多态性的比例为47.6%。其中有41个标记在抗、感池间检测到稳定的多态性。采用作图软件Mapmaker/EXP(version 3.0b)进行标记间连锁分析,构建遗传连锁图谱,41个标记中有16个未能连锁,另25个标记分成6个连锁群。
     5.利用区间作图软件Mapmaker/QTL(version 1.1b)对水稻开花期耐热性相关QTL进行初步定位,共检测到6个QTLs,分布于第1、2、3、6、10号等5条染色体上,各QTL对表型变异的贡献率在6.6%~63.3%之间。
Along with global warming, high temperature stress has been becoming a vital menace when extreme high temperature climate appears frequently. Breeding new rice cultivars with stable seed-set ratio when high temperature climate occurs in rice anthesis is a crucial approach to mitigate the impact of high temperature climate that influences the growth and development, the yields, and the quality of rice severely. It is one of the most concerned traits currently that the yields will be badly impacted because of seed-set ratio declining fearfully after heat stress in anthesis. The materials and theory support can be provided in high temperature ecological adaptability breeding by selecting of specific high temperature tolerance rice resources and genetic basis research of its high temperature tolerance ability.
     In this study, the primary mapping of rice heat tolerance concerned QTL of rice in anthesis has been achieved by bulked segregation analysis (BSA) with 349 SSR molecular markers, when the heat tolerance ability of parents and more than 300 individuals F_2 population, structured by Gui99 (female parent) and N22 (male parent), were evaluated with comparative seed-set ratio after high temperature treatment in got-up light-temperature chamber. The male parent was selected from N22 materials that were gathered in different ages by IRRI germplasm gene library after evaluation of heat tolerance ability with seed-set ratio and analysis of genetic differences by SSR molecular marker. The basic results of the research are summarized as follows:
     1. The high temperature tolerance ability of N22 germplasm resources that were gathered in different ages and domestic constantly employed materials were identified. The variance analysis of the materials' seed-set ratio after 33℃average temperature treatment in plant growth chamber showed that the high temperature tolerance ability of N22-2006, Shuhui527, N22-1996, Mianhui725 and Gui99 fall in turn. The growth ability, development period, and heat tolerance ability of different N22 materials diversities were detected. The N22-1984 was absent from high temperature treatment because of feeble growth and delayed anthesis of more than 10 days. The seed-set ratio of N22-1996 was lower than N22-2006 whereas it is not remarkable.
     2. The DNA polymorphism of 76 SSR molecular markers was manifested among N22-1984, N22-1996 and N22-2006 with 349 markers, namely 21.8% diversity rate. The check of polymorphism maintenance after materials' propagation revealed that the diversities between N22-1984 and the other two materials were invariable, while it had been vanished between N22-1996 and N22-2006. The germplasm diversity of N22-1984 was reckoned primarily, while the difference between N22-1996 and N22-2006 was ascribed to resumable aberrance by self-cross.
     3. The treatment results of parents (Gui99 and N22) and F_2 population with 32℃average temperature in plant growth chamber displayed that the difference of average comparatively seed-set ratio between Gui99 and N22 was extreme remarkable with the value of 0.6831% and 14.0121%, and the comparatively seed-set ratio of F_2 population, located among 0.00%~70.19% and 4.89% of average value, and represented consecutive distribution that was leaned to female parent Gui99 with skewness 3.23 and kurtosis 14.89.
     4. 41 SSR molecular markers, which took its source at 166 markers within 349 markers that were detected diversities between Gui99 and N22, namely 47.6% diversity rate, had been digged out stable polymorphism between resistable and affected pool. 25 SSR molecular markers of 41 markers were separated into 6 linkage groups by mapping software Mapmaker/EXP (version 3.0b) analyzing linkage among markers and structuring genetic linkage map, while the other 16 markers had been failed to link.
     5. The 6 heat tolerance concerned QTLs of rice in anthesis that distributed in 1, 2, 3, 6 and 10 chromosomes separately, and whose variance explained value were varied between 6.6%~63.3%, had been mapped with interval mapping software Mapmaker/QTL (version 1.1b).
引文
1.曹立勇,朱军,赵松涛,何立斌,颜启传.水稻籼粳交DH群体耐热性的QTLs 定位.农业生物技术学报,2002,10(3):210-214
    2.曹立勇,赵建根,占小登,李登楼,何立斌,程式华.水稻耐热性的QTL定位及耐热性与光合速率的相关性.中国水稻科学,2003,17(3):223-227
    3.陈庆全.水稻抽穗开花期耐热性和重要农艺性状的遗传基础研究.[博士学位论文].武汉:华中农业大学图书馆,2007
    4.郭培国,李荣华.夜间高温胁迫对水稻叶片光合机构的影响.植物学报,2000,42(7):673-678
    5.黄英金,罗永锋,黄兴作,饶志明,刘宜柏.水稻灌浆期耐热性的品种间差异及其与剑叶光合特性和内源多胺的关系.中国水稻科学,1999,13(4):205-210
    6.卢新雄,崔聪淑,陈晓玲.国家种质库部分作物种子生活力监测结果与分析.植物遗传资源科学,2001,2(2):1-5
    7.卢新雄,陈晓玲.水稻种子贮藏过程中生活力丧失特性及预警指标的研究.中国农业科学,2002,35(8):975-979
     8.卢新雄,陈晓玲,盛锦山,曹桂兰.繁殖世代对水稻植株农艺性状及稻米品质的影响研究.植物遗传资源学报,2003,4(2):123-127
    9.马倩.玉米种质更新过程中遗传完整性变化的影响因素研究.[硕士论文].杭州,中国水稻研究所图书馆,2005
    10.彭锁堂,庄杰云,颜启传,郑康乐.我国主要杂交水稻组合及其亲本SSR 标记和纯度鉴定.中国水稻科学,2003,17(1):1-5
    11.乔永利,韩龙植,安永平,张媛媛,曹桂兰,高熙宗.水稻芽期耐冷性QTL 的分子定位.中国农业科学,2005,38(2):217-221
    12.沈利爽,何平,徐云碧,潭震波,陆朝福,朱立煌.水稻DH群体的分子连锁图谱及基因组分析.植物学报,1998,40(12):1115-1122
    13.苏顺宗,黄玉碧,杨俊品,丁仲芳,高世斌.利用SSR鉴定水稻杂交种子纯度的研究.种子,2003,127(1):23-25
    14.汤日圣,郑建初,陈留根,张大栋,金之庆,童红玉.高温对杂交水稻籽粒灌浆和剑叶某些生理特性的影响.植物生理与分子生物学学报,2005,31(3):657-662
    15.辛业芸,张展,熊易平,严隆平.应用SSR分子标记鉴定超级杂交水稻组合及其纯度.中国水稻科学,2005,19(2):95-100
    16.徐云碧,石春海,申宗坦.热害对早稻结实率的影响.浙江农业科学,1989,(2):14-18
    17.严长杰,徐辰武,裔传灯,梁国华,朱立煌,顾铭洪.用SSR标记定位水稻糊化温度的QTLs.遗传学报,2001,28(11):1006-1011
    18.颜春龙,阳峰萍,柳美南,王可可,吴放斌,姚志坚.水稻品种资源现状浅析.江西农业学报,2007,19(9):32-34
    19.袁甲正.低温贮藏对栽培大麦染色体的影响.青海师范大学学报(自然科学版),1996,1:50-52
    20.杨纯明,James L,Heilman.短期高温对水稻生长发育和产量的影响.国外作物育种,1994,(2):4-5
    21.伊华新,邓秀新.植物种质离体保存技术研究进展.植物学通报,1999,16(5):574-581
    22.曾汉来.温度导致的水稻雄性不育现象研究概述.水稻文摘(综述),1993,12(5):1-6
    23.曾汉来,卢开阳,贺道华,潘雪祥,张端品.中籼杂交水稻新组合结实性的高温适应性鉴定.华中农业大学学报,2000,19(1):1-4
    24.张桂莲.两个早稻品种耐热性生理及分子遗传基础的研究.[博士学位论文].长沙:湖南农业大学图书馆,2006
    25.张晗,卢新雄,张志娥,陈晓玲,辛萍萍.种子老化诱导小麦染色体畸变及大麦醇溶蛋白带型频率变化的研究.植物遗传资源学报,2004,5(1)56-61。
    26.张宗申,利容千,王建波.外源Ca~(2+)、La~(3+)和EGTA处理对辣椒叶片热激反应的影响.武汉大学学报(自然科学版),2000,46(2):253-256
    27.赵志刚,江玲,肖应辉,张文伟,翟虎渠,万建民.水稻孕穗期耐热性QTLs 分析.作物学报,2006,32(5):640-644
    28.郑小林,董任瑞.水稻热激反应的研究Ⅰ.幼苗叶片的膜透性和游离脯氨酸含量的变化.湖南农业大学学报,1997,23(2):109-112
    29.郑小林,董任瑞.水稻热激反应的研究Ⅱ.高温对晚稻幼苗叶片叶绿体的Hill反应及超微结构的影响.湖南农业大学学报,1998,24(5):352-355
    30.郑小林,董任瑞.水稻热激反应的研究Ⅲ.高温对水稻幼苗叶片过氧化物酶的影响.湖南农业大学学报,1998,24(6):433-436
    31.朱昌兰,肖应辉,王春明,江玲,翟虎渠,万建民.水稻灌浆期耐热性的数量性状基因位点分析.中国水稻科学,2005,19(2):117-121
    32.朱积余,莫钊志.林木种质资源的收集保存及其研究进展.广西林业科学,1996,25(4):218-222
    33.庄杰云,樊叶杨,吴建利,夏英武,郑康乐.应用二种定位法比较不同世代水稻产量性状QTL的检测结果.遗传学报,2001,28(5),458-464
    34.Abdelmagid A S,Osman A M.Influence of storage period and temperature on viability and chemical composition of cotton seeds.Annals of Botany,39:237-248,1975
    35.Broman K W,Speed T R A review of methods for identifying QTLs in experimental crosses.In:Seillier-Moiseiwitsch F,ed.Statistics in Molecular Biology and Genetics.IMS Lecture Notes-Monograph Series,1999,114-142
    36. Dirk Selmar, Gerhard Bytof, Sven-Erik Knopp. The storage of green coffee (Coffea arabica): decrease of viability and changes of potential aroma precursors.Annals of Botany, 2008, 101: 31-38
    
    37. Dourado A M and Roberts E H. Chromosome aberrations induced during storage in barley and pea seeds. Annals of Botany, 1984, 54: 767-779
    
    38. Green P J. Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika, 1995, 82: 711-732
    
    39. Li J X, Yu S B. Xu C G. Analyzing quantitative trait loci for yield using a vegetatively replicated F_2 population from a cross between the parents of an elite rice hybrid. TheorAppl Genet, 2000,101: 248-254.
    
    40. Jagadish S V K, Craufurd P Q , Wheeler T R. High temperature stress and spikelet fertility in rice (Oryza sativa L). Journal of Experimental Botany, 2007, 58(7):1627-1635
    
    41. James Hansen, Makiko Sato, Reto Ruedy, Ken Lo, David W Lea, Martin Medina-Elizade. Global temperature change. PNAS, 2006,103(39): 14288-14293
    
    42. Jansen R C. Interval mapping of multiple quantitative trait loci. Genetics, 1993,135:205-211
    
    43. Jeuken M J W, Linshout P. Future perspectives of backcross inbred lines for exploitation of wild germplasm: a case study on lactuca saligna as a donor for quantitative resistance to lettuce downy mildew. Eucarpia Leafy Vegetables,Noordwijkerhout, T'he Netherlands, 2003, 69-74
    
    44. Kao C H, Zeng Z B. General formulas for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm. Biometrics, 1997, 53: 653-665
    
    45. Kao C H, Zeng Z B, Teasdale R D. Multiple interval mapping for quantitative trait loci. Genetics, 1999, 152: 1203-1216
    46. Kao C H, Zeng Z B. Modeling epistasis of quantitative trait loci using Cockerham's model. Genetics, 2002, 160: 1243-1261
    
    47. Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185-199
    
    48. Matsui T, Omasa K, Horie T. High temperature at flowering inhibit swelling of pollen grains, a driving force for thecae dehiscence in rice (Oryza sativa L.). Plant Production Science, 2000, 3: 430-434
    
    49. Matsui T, Omasa K, Horie T. The difference in sterility due to high temperatures during the flowering period among japonica rice varieties. Plant Production Science (2001) 4: 90-93
    
    50. McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T.Report on QTL nomenclature. Rice Genet Newslett, 1997, 14: 11-13
    
    51. McCouch S R, Teytelman L, Xu Y B. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Research, 2002, 9:199-207
    
    53. Murata M, Tsuchiya T, Roos E E. Chromosome damages induced by artificial seed aging in barley. Theor Appl Genet, 1984, 67: 161-170
    
    52. Murray M G, Thompsom W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980, 8: 4321-4325
    
    54. Nishiyama I, Satake T. High temperature damage in the rice plant. Jpn J Trop Agric, 1981,25; 14-19
    
    55. Peng S B, Huang J L, Sheehy J E, Laza R C, Visperas R M, Zhong X H. Centeno G S, Khush G S, Cassman K G. Rice yields decline with higher night temperature from global warming. PNAS, 2004, 101(27): 9971-9975
    
    56. Prasad P V V, Boote K J, Allen L H, Sheehy J E, Thomas J M G. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Research, 2006, 95: 398-411
    57. Roberts E H, Carpenter A J. The interaction of photoperiod and temperature on the flowering response of rice. Annals of Botany, 1965, 29: 359-364
    
    58. Roberts E H. Loss of viability: Chromosomal and genetical aspects. Seed Sciences and Technology, 1973,1: 515-527
    
    59. Roberts E H. Seed aging: the genome and its expression. Senescence and Aging in Plants. Academic Press, INC. San Diego, California, 1988, 465-498
    
    60. Satagopan J M, Yandell B S, Newton M A. A bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics, 1996, 144: 805-816
    
    61. Satake T, Yoshida S. High temperature induced sterility in indica rices at flowering. Japanese Journal of Crop Sceince, 1978, 47: 6-17
    
    62. Satoshi Morita, Jun Ichi Yonemaru, N Ichi Takanashi. Grain growth and endosperm cell size under high night temperatures in rice {Oryza sativa L). Annals of Botany, 2005, 95(4): 695-701
    
    63. Sax K. The association of size difference with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics, 1923, 8: 552-560
    
    64. Seung Yeob Lee, Jeong Ho Ahn, Young Soon Cha, Doh Won Yun, Myung Chul Lee, Jong Cheol Ko, Kyu Seong Lee, Moo Young Eun. Mapping of quantitative trait loci for salt tolerance at the seedling stage in rice. Mol Cells, 2006, 21(2): 192-196
    
    65. Song Z P, Xu X, Wang B, Chen J K, Lu B R. Genetic diversity in the northernmost Oriza rufipogon populations estimated by SSR markers. Theor Appl Genet, 2003, 107:1492-1499
    
    66. Specht C E, Keller E R J, Freytag U. Survey of seed germinability after long-term storage in the Gatersleben genebank. Plant Genetic Resources Newsletter, 1997, 111:64-68
    
    67. Tang RS, Zheng J C, Chen LG, Zhang D D, Jin Z Q, Tong H Y. Effects of high temperature on grain filling and some physiological characteristic in flag leaves of hybrid rice.Journal of Plant Physiology and Molecular Biology,2005,31(6):657-662
    68.Tao K L,Perrino P,Spagnoletti Zeuli P L.Rapid and nondestructive method for detecting composition change in wheat germplasm accessions.Crop Science,1992,32:1039-1042
    69.Tao L,Wang X,Liao X,Shen B,Tan H,Huang S.Physiological effects of air temperature and sink-source volume at milk-filling stage of rice on its grain quality.Journal of Applied Ecology,2006,17(4):647-652
    70.Temnykh S,Park W D,Ayres N S,Cartinhour N,Hauck L,Lipovich Y G,Cho T I,McCouch S R.Mapping and genome organization of microsatellite sequences in rice (Oryzae sativa L.).Theor Appl Genet,2000,100(5):697-712
    71.Tohru kobata,Naoya Uemuki.High temperature during the grain-filling period do not reduce the potential grain dry matter increase of rice.Agron J,2004,96:406-414
    72.Tsutomu Matsui,Kenji Omasa.Rice(Oryza sativa L.) cultivars tolerant to high temperature at flowering:anther characteristics.Annals of Botany,2002,89:683-687
    73.Vani B,Saradhi PP,Mohanty P.Characterization of high temperature induced stress impairments in thylakoids of rice seedlings.Indian J Biochem Biophys,2001,38(4):220-229
    74.Wassmann R,Dobermann A.Direct and indirect consequences of global warming on rice growing regions in Asia.Abstract,An International Workshop on "Cool Rice for a Warmer World",2007,Wuhan,China
    75.Wu K S,Tanksley S D.Abundance,polymorphism and genetic mapping of microsatellites in rice.Mol Gen Genet,1993,241:225-235
    76.Xu J L,Xue Q Z,Luo L J,Z-K.QTL dissection of panicle number per plant and spikelet number per panicle in rice(Oryza Sativa L).Acta Genetics Sinica,2001,28(8):752-759
    77. Xu S. Estimating polygenic effects using markers of the entire genome. Genetics,2003, 163: 789-801
    
    78. Yano M, Kojima S, Takahashi Y, Iin H X, Sasaki T. Genetic control of flowering time in rice, a short-day plant. Plant physiology, 2001, 127:1425-1429
    
    79. Yi N. A unified Markov chain Monte Carlo framework for mapping multiple quantitative trait loci. Genetics, 2004,167: 967-975
    
    80. Yi N, Yandell B S, Churchill G A. Bayesian model selection for genome-wide epistatic quantitative trait loci analysis. Genetics, 2005, 170: 1333-1344
    
    81. Yin Xinyou, Kropff M J. The effect of temperature on leaf appearance in rice. Annals of Botany, 1996, 77: 215-221
    
    82. Yoshida S. Fundamentals of rice crop science. Malina: IRRI, 1981, 77-83
    
    83. Yoshida S, Satake T, Mackill DS. High temperature stress in rice. IRRI Research Paper Series, 1981, Vol. 67
    
    84. Yuan Xiao-ping, Wei Xing-hua, Hua Lei, Yu Han-yong, Wang Yi-ping, Xu Qun,Tang Sheng-xiang. A comparative study of SSR diversity in Chinese major 78 rice varieties planted in 1950s and in the recent ten years (1995-2004). Rice Science, 2007,14(2): 78-84
    
    85. Zhang Y M, Xu S. A penalized maximum likelihood method for estimating epistatic effects of QTL. Heredity, 2005, 95(1): 96-104
    
    86. Zhang Y M, Xu S. Mapping quantitative trait loci in F_2 incorporating phenotypes of F_3 progeny. Genetics, 2004, 166: 1981-1993
    
    87. Zhang Y M, Xu S. Advanced statistical methods for detecting multiple quantitative trait loci. Recent Res Dev Genet Breed, 2005, 2: 1-23
    
    88. Zeng Z B. Theoretical basis for separation of multiple linked gene effects in mapping of quantitative trait loci. Proc Natl Acad Sci USA, 1993, 90: 10972—10976
    89. Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136:1457-1468

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700