用户名: 密码: 验证码:
双套管防屈曲支撑的抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的快速增长,人口的不断增加,人们对高层建筑的追求不断的增强,防屈曲支撑(Buckling-Restrained Brace, BRB)的引入给高层建筑的结构设计和抗震设计增添了新的设计理念。
     防屈曲支撑是一种新型支撑构件,在受拉荷载和受压荷载作用下,核心受力截面均能够达到屈服,并能有效地吸收和耗散地震输入的能量,减小结构的地震反应。最初的BRB形式是由低屈服材质的芯材和内填混凝土的钢管组成,目前最为流行的BRB为内核芯材截面形式为“─”和“+”字形两种,最近还出现了“T”形截面。本文研究的支撑类型为内外核均由不同截面尺寸的钢管组成的双套管防屈曲支撑,先对双套管防屈曲支撑进行了理论分析,推导了支撑整体承载力计算公式、内核与套筒之间的接触变形公式,分析了内核发生高阶屈曲模态时支撑受力特性。通过试验对六组双套管防屈曲支撑进行了抗震性能研究,分析了双套管防屈曲支撑的极限承载能力和耗能能力,并对影响支撑工作性能的一些主要影响因素进行了分析,如:支撑的约束比、内核端头突出长度以及套管间间隙等。研究表明:双套管防屈曲支撑在约束比不小于1.34的情况下具有良好的受力性能和耗能性能。
     本文利用有限元软件对双套管防屈曲支撑的受力过程进行了模拟分析,其结果与试验结果吻合良好。通过对套管之间摩擦影响分析,发现摩擦对双套管防屈曲支撑的前期耗能性能影响不明显。通过试验与有限元计算结果的对比分析,提出相关双套管防屈曲支撑的参数限值,为今后的双套管防屈曲支撑的研究和应用提供参考。
With the rapid economic growth and increasing population, high-rise buildings have been pursuit by more and more people. The introduction of the Buckling Restrained Brace’s gives a new concept of high-rise building structural and seismic design.
     BRB is a new kind of brace, in which the core cross-section can reach yield strength under tension and compression function. It can absorb and dissipate the seismic energy effectively to reduce the seismic response of structures. The initial form of BRB is composed of core material of low yield and steel pipe filled with concrete. In present, the core section type of the most popular BRB are“─”and“+”. Recently,“T”-shaped cross section appeared. In this paper, the type of brace studied is the sleeved column of BRB, in which inner core and outer core are composed of steel pipe of different section sizes. Firstly, the theoretical analysis was done for the sleeved column of BRB, and the bearing capacity calculation formula of the total brace and the contact formula between inner core and sleeve were deduced, while the capacity properties of the brace was analyzed when the inner core occur high-level buckling. Through the test ,the seismic behavior of the six units BRB were studied, while the ultimate bearing capacity and energy dissipation capability of the BRB were analyzed, and the main factors affect the work performance is analyzed, such as the buckling-restrained ratio, prominent length of the inner core, gap and so on. The result shows that the sleeved column of BRB is of better bearing capacity and energy dissipation capability when the buckling-restrained ration is no less than 1.34.
     The stress procedure of the BRB were simulated and analyzed by using the finite element software. The result was compared to the results of experiment. The both are coincident. The result show that the friction impact is not obviously in the early of energy performance of the BRB through the analysis of friction impact between the sleeved columns. The correlative limited parameters of the BRB’s were derived by comparing the experiment to the finite element analysis, which offers reference of the BRB for the future research and application.
引文
[1]李国强.多高层建筑钢结构设计[J].第一版.北京:中国建筑工业出版社,2004,10-11.
    [2]《建筑抗震设计规范》(GB50011-2001)[S].第一版.北京:中国建筑工业出版社
    [3]周锡元,吴育才.工程抗震的新发展[M].北京:清华大学出版社,2002.
    [4]石建光.偏心钢支撑-钢筋混凝土框架的侧移和地震反应[J].工业建筑出版社,2008,38(1):106-109.
    [5]方祥,叶燎原.耗能支撑框架结构中几个问题的探讨[J].云南工业大学学报,1998,14(2):1-5.
    [6]丰定国,王社良主编.抗震结构设计[M].第一版.武汉:武汉工业大学出版社,2001,236-237.
    [7]蔡丹绎,李爱群,程文禳.调频液体阻尼器(TLD)的等效力学模型研究[J].地震工程与工程振动. 1998.1:80-87.
    [8]李春祥,杜冬.基于结构加速度响应控制时不同激励下MTMD性能的比较研究[J].振动与冲击;2003.4:87-92.
    [9]汪家铭,中岛正爱.屈曲约束支撑体系的应用和研究进展(Ⅱ)[J].陆烨译.建筑钢结构进展,2005,7(2):1-11.
    [10]蔡益燕,郁银泉.屈曲约束支撑和制震设计.高层建筑抗震技术交流会论文集(第九届).中国,2003,7-10.
    [11]汪家铭,中岛正爱.屈曲约束支撑体系的应用和研究进展(Ⅰ)[J].陆烨译.建筑钢结构进展,2005,7(1):1-12.
    [12]刘建彬.防屈曲支撑及防屈曲支撑框架设计理论研究[D].清华大学.硕士学位论文,2005.
    [13] Yoshino T, Karino Y. Experimental study on shear wall with braces: Part 2.Summaries of technical papers of annual meeting[C].Architectural Institute of Japan. Structural Engineering Section, 1971:403.
    [14] Wakabayash i M., Nakamura T., Kashibara, A., Morizono, T. and Yokoyama, H. Experiment entail study of elastic-plastic properties of recast concrete wall panels with built-in insulating braces[J].Sum-maries of Technical Papers of Annual Meeting , Architectural Institute of Japan,1041-1044.
    [15] Kimura K., Takeda Y. and Yoshioka K. An experimental study on brace in steel tube and morta [J]. In: Summaries of Technical Papers of Annual Meeting of the Architectural Insitute, Japan, 1976, 419-427.
    [16] Mochizuki N., Murata Y., Andou N. An experimental study on buckling ofunbounded braces under centrally applied loads [J]. In: Proceedings, Annual meeting of the Architectural Institute of Japan, 1980, 237-250.
    [17] Fujimoto M., Wada A., and Saeki E.et al. A study on the unbowed braces encased in buckling-restraining concrete and steel tube [J]. Journal of structural engineering, 1998, 34B:249-258.
    [18] Watanabe A., Hitomi Y, and Wada A.et al. Properties of braces encased in buckling-restraining concrete and steel tube [J]. In: 9th World-Conf. on Earthquake Engineering, Vol. IV, Japan, 1988, 719–724.
    [19] Sridhara, B.N. Sleeved column-as a basic compression member [J]. In: Proceedings, 4th International conference on steel structures and space frames. Singapore, 1990, 181-188.
    [20] Tada M.A, Kuwahara S. study on stiffening capacity of double-tube members [J]. Journal of structural and construction engineering.1993, 151-158.
    [21] Clark P., Kazuhiko Kasai. Design procedures for buildings incorporating hysteretic damping devices[C].In: Proceedings, 68th Annual Convention, SEAOC, Santa Barbara, California, 1999, 105-112.
    [22] Black C., Makris N., and Aiken I. Component testing, seismic evaluation and characterization of buckling-restrained braces [J]. Journal of structural engineering, 2004, 130(6):880-894.
    [23] Nakamura H., Maeda Y., and Takeuchi T.et al. Fatigue properties of practical-scale unbounded braces[R]. Nippon steel technical report, 2000, No.82.
    [24] Koetaka Y., Narihara H., and Tsujita O. Experimental study on buckling restrained braces[C]. In: Proceedings of Sixth Pacific Structural Steel Conference. Beijing, China, 2001, 15-17.
    [25] Aiken I.D., Mahin S.A. and Uriz P. Large-scale testing of buckling-restrained braced frames[C]. In: Proceedings, Japan passive control symposium. Japan: Tokyo Institute of Technology, 2000, 35-34.
    [26] Sabelli R. Mahin S. and Chang C. Seismic demands on steel braced frame building with buckling-restrained braces [J]. Engineering Structures, 2003, 25(5):655-666.
    [27] Kim J. Seo Y. Seismic design of low-rise steel frames with buckling-restrained braces [J]. Engineering Structures, 2004, 26(5):543-551.
    [28] Hanaor A, Schmidt L C. Space truss studies with force limiting devices [J]. ASCE, Journal of the Structural Division, 1980, 106(ST11):218-225.
    [29] EI-Sheikh A. Effect of force limiting devices on behavior of space trusses [J]. Engineering Structures, 1999, 21(1):34-44.
    [30]陈煜.一字形截面防屈曲支撑的抗震性能研究[D].湖南大学硕士学位论文,2006.
    [31]邓长根.日本建筑结构耗能减震研究和应用的若干新进展[J].四川建筑科学研究,2003,Vol. 29(2):84-87.
    [32]申波,邓长根.双钢管构件由点接触到线接触的连续过渡[J].工程力学, 2007,24(2),154-160.
    [33]苏成江,王秀丽.约束屈曲支撑性能分析及在钢框架中的应用研究[D].兰州理工大学硕士学位论文,2007.
    [34]罗开海,程绍革,白雪霜.屈曲约束耗能支撑力学性能分析[J].工程抗震与加固改造. 29(2),北京:2007,32-32.
    [35] Chen C. C., Wang C.H., and Hwang T. C. Buckling strength of buckling inhibited Braces[C]. In: Proceedings, 3rd Japan-Korea-Taiwan Joint Seminar on Earthquake Engineering for Building Structures, Taipei, Taiwan, 2001, 265-271.
    [36]蔡克铨,赖俊维.钢骨消能支撑构架之耐震行为[J].清华大学学报自然科学版. 2001,28(2):73-85.
    [37] Xie Q. State of the art of buckling restrained braces in Asia [J]. Journal of Construction Steel Research, 005, Vol.61 (6):727-748.
    [38]谢强,赵亮.屈曲约束支撑的研究进展及其应用[J].钢结构,2006,21(84): 46-48.
    [39]李妍.防屈曲支撑的抗震性能及子结构试验方法[D].哈工大博士论文, 2007.
    [40]王秀丽,陈明.一种适用于杆系结构的屈曲约束支撑的有限元分析[D].甘肃兰州理工大学,2007.
    [41]申波.轴压套管构件静力稳定性能的理论与试验研究[D].同济大学博士论文,2007.
    [42]陈骥.钢结构稳定理论与设计[M].第二版,北京,科学出版社,2003.
    [43]王华琪,丁洁民.防屈曲支撑的应用与设计[J].结构工程师. 2007,23(4):6-11.
    [44]王华琪,丁洁民,姚兴华.防屈曲支撑理论分析与有限元模拟[J].沈阳建筑大学学报(自然科学版). 2008,24(2):191-194.
    [45]《建筑抗震试验方法规程》(JBJ101-96)[S],中华人民共和国建设部.
    [46] ABAQUS/Standard版本6.4产品综述,美国ABAQUS软件公司.
    [47]钱洪涛,褚洪民,邓雪松.防屈曲支撑的研究与应用进展[J].防灾减灾工程报,2007,27:225-232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700