用户名: 密码: 验证码:
圆形平面二维可展屋盖结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可展结构是具有展开功能的结构体系的统称,特点是可由收缩的紧密位形转变为预定的扩展位形,并在扩展位形下具有一定的承载能力。由于上述特点,使得可展结构在航空航天领域和建筑工程领域受到普遍重视。可展结构通常包括折叠结构、充气及索膜结构、张拉整体结构、开合结构四大类,其中后三类在建筑工程领域已有较多应用,而折叠结构的应用还基本处于空白状态,因此有必要开展相关的研究。本文提出的圆形平面二维可展屋盖结构就是由折叠结构与开合结构所衍化出的一种新型可展结构形式。
     可展结构的一项基本特征是要具有可靠的折展性能,在折展过程中体系呈机构状态,其核心是几何构成问题。为此,本文首先对圆形平面二维可展结构的几何构成进行了研究。通过对可展单元(包括直杆单元和折杆单元)的几何性质进行推导,确定以多折杆单元作为圆形平面二维可展结构的基本组成单元;在此基础上构建了圆形平面二维可展屋盖的几何模型,并对其可展性进行了论证;此外还探讨了可能的边界支承形式。
     作为开合屋盖,其结构性能也是本文研究的重点之一。本文首先以三种桁架形式,来代替多折杆单元中的“杆”,提出了三种结构方案,并对三种方案进行对比,从而确定了以桁架截面渐变为特征的“起拱方案”为最优结构方案;其次对“起拱方案”的结构性能进行分析,探讨了杆件截面、结构高度等对刚度的影响以及结构跨度与用钢量的关系。研究结果表明,本文可展结构以结构刚度为控制条件,展开到一定程度后,结构刚度下降较为明显。当跨度较大时,本文提出了增加轨道设置的改进措施。
     本文最后探讨了屋面板的形状优化设计问题。首先确立了以屋面板的间隙最小、不发生碰撞和展开面积最大为优化设计目标,并利用MATLAB软件编制以极大极小算法为基础的优化程序;然后,利用上述程序对圆形平面二维可展结构的屋面板进行了形状优化设计,并通过模拟屋面板的展开过程验证了方法的可行性。此外,还对屋面板与主体结构的连接问题进行了探讨,提出了斜拉式屋面板构造方案。
Deployable structures is a generic name for a broad category of expandable structures that can be transformed from a closed compact configuration to a predetermined, expanded form, in which they are stable and capable of load bearing. Due to these characteristics, deployable structures which can meet the special requirements, catch the universal attention in the fields of outer space and civil engineering. Deployable structures usually include four major categories, foldable structures, inflatable structures& cable-membrane structures, tensegrity structures and retractable structures. The last three categories have wider applications in the field of civil engineering, but foldable structures are basically in a state of blank. Therefore it is necessary to research foldable structures. This paper presents the two-dimensional deployable circular roof structures, which are developed from foldable structures and retractable structures.
     Deployable structures have a basic feature that they can be folded reliably, in the process of folding, system is amechanism. the core of problem is the geometric form. First, the paper launched a study on the geometric form of two-dimensional circular roof structures. Through deduction of the geometric properties for developable element (including the straight rods element and angulated element), the multi-angulated rods were considered as the basic modules of the two-dimensional deployable circular roof structures. Based on that, a geometric topology model of the two-dimensional deployable circular roof structures has been constructed, and its deployablity has been argued. It also explored the possible support forms on the boundary.
     As retractable roof structures, their structural properties are focus of the study in the paper. First, the author replaced the“rods”of the multi-angulated rods with three kinds of trusses, and raised three categories of structure scheme. After comparing, the "arch scheme" in which the section features are changed at different positions of the truss has been considered as the optimal structure scheme. Second, the basic mechanical properties of "arch scheme" have been analyzed, also how the bar section, Structural highness influence the structural stiffness, the relationship between structural spans and weights of steel were discussed. Study results show that the structures in this paper are in control of structural stiffness. When the structures spread to a certain degree, structural stiffness is decreased significantly. When the span is larger, the paper raised a progressive measure that there are two railways in a structure to improve the structural stiffness.
     Finally, the optimization problem of the roof slab shapes has been explored. First, objectives of optimization design which request minimum clearances of roof plates, roof plates can’t collide each other, and the max expanding area has been established, further more the author has compiled optimization procedures according to mini-max algorithm in virtue of software MATLAB. Second, the roof slab shapes of two-dimensional circular deployable structure have been optimized, after simulating the deploying process of roof slabs, we gained the conclusion that the method is feasible. In addition, the connection between the roof slabs and the main issues have been discussed, a constructional scheme of diagonal has been created.
引文
1 C. J. Gantes. Deployable Structures: Analysis and Design. WIT Press. 2000:1~291
    2 S. Pellegrino, S. D. Guest. IUTAM-IASS Symposium on Deployable Structures: Theory and Applications. Cambridge, U.K. 1998:1~197
    3 H. Tsunoda, Y. Senbokuya. Deployment Characteristics of Rigidizable Space Inflatable Structures. Space Technology. 2003,23(2&3):119~129
    4 K. Miura. Concepts of Deployable Space Structures. International Journal of Space Structures. 1993,8(1&2):3~16
    5张凤文.开合屋盖结构研究.天津大学博士学位论文. 2000:1~14
    6张凤文,刘锡良.开合屋盖结构的发展及开合机理研究.钢结构. 2001,16(54):1~6
    7刘锡良.现代空间结构.天津大学出版社. 2003:259~261
    8熊天齐.可展结构理论分析与研究.同济大学工学硕士学位论文. 2006:1~25
    9赵洪斌.杆系可展开结构初始形态及折展性能研究.哈尔滨工业大学工学博士学位论文. 2006:1~32
    10薛素铎,刘景园.可展开折叠式空间结构的研究现状与展望.第三届全国结构工程学术会议论文集. 1994:1402~1405
    11 R. E. Freeland. Survey of Deployable Antenna Concepts-Large Space Antenna Systems Technology. NASA-2269, Part I, 1983:381~421
    12 M. Chew, P. Kumar. Conceptual Design of Deployable Space Structures form the Viewpoint of Symmetry. International Journal of Space Structures. 1993,8(1&2):17~27
    13 J. M. Hedgepeth. Influence of Fabrication Tolerances on the Surface Accuracy of Large Antenna Structures. AIAA Journal. 1982,20(5):6840~6856
    14 C. J. Gantes, R. D. Logcher, J. J. Connor, Y. Rosenfeld. Deployability conditions for curved and flat, polygonal and trapezoidal deployable structures. International Journal of Space Structures. 1993,8 (1&2): 97~106
    15 C. J. Gantes. Geometric constraints in assembling polygonal deployable unitsto form multi-unit structural systems. In: Parke,G.A.R., Howard, C.M. (Eds.), Proceedings of the Fourth International Conference on Space Structures, Surrey, United Kingdom, Thomas Telford, London,1993:793~803
    16 C.J. Gantes, E. Konitopoulou. Geometric Design of Arbitrarily Curved Bistable Deployable Arches with Discrete Joint Size. International Journal of Solids and Structures. 2004,41(20):5517~5540
    17 C. J. Gantes. An improved analytical model for the prediction of the nonlinear behavior of flat and curved deployable spaceframes. Journal of Constructional Steel Research. 1997, 44(1):129~158
    18 C. J. Gantes, R. D. Logcher, J. J. Connor. Simulation of the deployment process of multi-unit deployable structures on a Cray-2. International Journal of Supercomputer Applications. 1993a,7(2):144~154
    19 C. J. Gantes, R. D. Logcher, J. J. Connor. A simple friction model for scissor-type mobile structures. Journal of Engineering Mechanics, ASCE 1993b,119(3):456~475
    20 C. J. Gantes, R. D. Logcher, J. J. Connor. A systematic design methodology for deployable structures. International Journal of Space Structures. 1994a,9(2): 67~86
    21 C. J. Gantes, R. D. Logcher, J. J. Connor. Equivalent continuum model for deployable flat lattice structures. Journal of Aerospace Engineering, ASCE 1994,6(7):72~91
    22 F. Escrig. Expandable space structures. International Journal of Space Structures. 1985,3(1):79~91
    23 F. Escrig. Transformable Architecture. Journal of the International Association for Shells and Space Structures. 2000,41(1):3~22
    24 F. Escrig. Las estructuras de Emilio Perez Pinero. In Arquitectura Transformable. Escuela Tecnica Superior de Arquitecturade Sevilla. 1993:11~32
    25计飞翔.折叠结构体系及静力性能研究.长安大学硕士学位论文, 2005:46~64
    26向华.折叠式网壳帐篷结构的足尺试验研究.长安大学硕士学位论文, 2004:32~47
    27总后勤部建筑工程研究所.大型通用帐篷技术文件. 2003
    28陈向阳,关富玲.折叠结构几何非线性分析.计算力学学报. 2000,17 (4):435~440
    29陈向阳,关富玲,陈务军.折叠结构的主从自由度分析.工程力学. 1999,16(5):83~88
    30陈向阳,关富玲等.复杂剪式铰结构的几何分析和设计.空间结构. 1998,4(1):45~51
    31陈务军.空间展开析架结构设计原理与展开动力学分析理论研究.浙江大学博士论文. 1998:1~16
    32关富玲,罗尧治,陈务军等.可伸展馈源架撑结构方案设计.浙江大学土木系空间结构研究室研究报告. 1996,12
    33关富玲,罗尧治,陈务军等.大型构架式可展天线.浙江大学土木系空间结构研究室研究报告. 1997,10
    34刘锡良,朱海涛.折叠结构动力特性分析.建筑结构学报. 1999,20(5):66~69
    35朱海涛,刘锡良.折叠网架计算模型分析与试验.天津大学学报. 1999, 32(1):1~5
    36刘锡良,朱海涛.一种新型空间结构——折叠结构体系.工程力学增刊. 1996: 497~500.
    37蓝天,刘枫.中国空间结构的20年.第十届空间结构学术会议论文集.中国建材工业出版社, 2002
    38马惠娟.索加强张拉膜结构的非线性分析及图形显示.天津大学硕士学位论文. 1994:1~32
    39 R. Motro. Tensegrity Systems: The State of The Art. International Journal of Space Structures. 1992, 7(2):75~84
    40 R. Motro. Forms and Forces in Tensegrity Systems. Pro. 3rd. Int. Conf. Space Structures. 1984:283~288
    41 A. Hanaor. Double-Layer Tensegrity Grids. In: H.Nooshin. ed. Studies in Space Structures, Multiscience. 1993,(1&2):135~143
    42唐建民,沈祖炎.圆形平面轴对称索穹顶结构施工过程跟踪计算.土木工程学报. 1998,31(5):24~32
    43黄呈伟,陶燕,罗小青.索穹顶的施工张拉及其模拟计算.昆明理工大学学报. 2000, 25(1): 15~19
    44李煜照,张建华,张毅刚.索穹顶新型节点设计及有限元分析.山西建筑2006,32(23):6~7
    45 H. Lalvani, D.G. Emmerich, S. Sadao, K. Snelson. Origins of Tensegrity. Views of Emmerich, Fuller and Snelson and Responses. International Journal of Space Structures. 1996,11(1&2):27~57
    46罗尧治.索杆张力结构数值分析理论研究.浙江大学博士学位论文. 2000:24~46
    47沈祖炎,张立新.基于非线性有限元的索穹顶施工模拟分析.计算力学学报. 2002, 19(4): 466~471.
    48姜群峰.松弛索杆体系的形态分析和索杆张力结构的施工成形研究.浙江大学硕士学位论文. 2004:1~24.
    49 Structural Design of Retractable Roof Structures .WIT Press, 2000
    50 R. G. Robbie. The Architecture of the Toronto Skydome. Bulletin of IASS. 1992,33(3):155~162
    51 H. Charalambu. Skydome-Design of Roof Moving System. Bulletin of IASS. 1992,33(3):171~180
    52 C. M. Allen, D. Duchesne. Application of Computer-aided Design in the Ontario Dome Stadium Project. Canadian Journal of Civil Engineering. 1998(15):14~23
    53 S. Seifert. Building the Skydome. Bulletin of IASS. 1992,33(3):181~193
    54刘锡良.大跨度开合空间结构.钢结构. 1998(4):50~53
    55 P. E. Kassabian, Z. You, S. Pellegrino. Retractable roof structures. Proc Inst Civil Engr Struct Buildings. 1999,134(2):45~56
    56 C. Hoberman. Reversibly expandable doubly-curved truss structure. US Patent 4,942,700, 1990
    57 C. Hoberman. Radial expansion/retraction truss structures. US Patent 5,024,031, 1991
    58 S. Pellegrino. Analysis of Prestressed Mechanisms. International Journal of Solids and Structures. 1990,26(12):1329~1350
    59 Z. You, S. Pellegrino. Foldable bar structure.Int J Solids truct. 1997,34(15) 25~47
    60 Z. You, S. Pellegrino. Expandable/collapsible structures. British Patent Application no. 9601450.1, 1996
    61 J. C. Chilton, B. S. Choo. A parametric analysis of the geometry ofretractable reciprocal frame structures. Proceedings of the LSA98 Conference on Lightweight Structures in Architecture Engineering and Construction. 1998:547~555
    62 R. Carolina, J. C. Chilton. Swivel diaphragm a new alternative for retractable ring structures. 2003,44(143):181~188
    63 S. Pellegrino. Structural Computations with the Singular Value Decomposition of the Equilibrium Matrix. Int. J. of Solids Structure. 1993,30(21):3025~3035
    64上海旗忠网球中心结构设计研究(林原稿). 2007
    65罗尧治,许贤,毛德灿.可开启屋盖结构.第四届全国现代结构工程学术研讨会. 2004:193~201
    66毛德灿,罗尧治,由衷.径向可开展屋盖结构的拓扑构形研究.第五届全国现代结构工程学术研讨会. 2005:410~413
    67毛德灿,罗尧治.径向可开展屋盖结构分析与设计.第六届全国现代结构工程学术研讨会.工业建筑增刊. 2006:244~249
    68 T. Kokawa. Structure Idea of Retractable Loop-Dome. Journal of IASS. 2000,41(2):111-116
    69蓝天,空间钢结构的应用与发展,建筑结构学报. 2001,22(4):2~8
    70单建,易军,郑勤刚.荷载缓和体系的受力性能研究.工程力学.1999, 16(3):38~43
    71 C. melboume, P. bullman. Load relieving roof systems. In: Proc Int Conf. on Non-conventional Structures. London,1987(2):1~6
    72 F. Jensen, S. Pellegrino. Expandable structures formed by hinged plates. In: Proceedings of the Fifth International Conference on Space Structures, Thomas Telford Limited, Guildford Surrey. 2002:263~272
    73 K. Svanberg. The method of moving asymptotes––a new method for structural optimization. Int J Numer Meth Eng. 1987(24):59~73.
    74 T. Buhl, F. Jensen, S. Pellegrino. Shape optimization of cover plates for retractable roof structures. Computers and Structures 2004(82):1227~1236

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700