用户名: 密码: 验证码:
PBX有效力学性能及本构关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的主要研究内容如下:
     1.对PBX有效弹性性能的最新研究进展以及PBX本构关系(即应力应变关系)的研究现状进行了综述。在总结分析文献的基础上,提出了以PBX作为研究对象,着重对其有效弹性性能进行细观力学模拟,以及对不同应变率下(准静态、动态)的力学行为及本构关系进行研究。
     2.选取了以TATB为基的PBX作为研究对象,在获得单组份力学性能的前提下,采用三种经典的细观力学模型对其有效弹性模量(体积模量、剪切模量)进行了理论计算。模拟计算结果与实验值的对比表明,采用Hashin—Shtrikman法和三阶界限法模拟的有效弹性模量要优于采用Voigt—Reuss界限法所获得的结果。
     3.设计了系列组分相同但压制密度不同的以TATB为基的PBX样品,测试了它们的弹性模量值。基于细观力学模型的模拟结果,通过引入一个含有密度因素的修正系数,对Hashin-Shtrikman模型进行了改进,获得了该PBX的有效模量跟压制密度的函数关系。改进后的模型能较好地预测以TATB为基的双组份PBX的有效弹性模量。
     4.测试了以TATB为基的两种PBX(即PBX-1和PBX-2)在准静态加载下的应力-应变曲线,研究了弹性模量、压缩强度等的率相关规律。获得了用于表征两种PBX应变率敏感程度的两个材料参数A和B的值。结果表明,PBX-2力学性能对应变率的依赖性显著弱于PBX-1。
     5.基于Lemaitre的损伤演化方程,建立了适用于PBX在不同应变率下的损伤演化方程,考虑应变率效应,建立了一个准静态加载下考虑损伤演化的非线性本构方程,该本构方程较好地描述了PBX在低应变率下的力学行为。
     6.利用Hopkinson压杆,分别测试了以HMX为基的PBX在老化前后的动态应力-应变曲线。研究了老化前后动态强度的变化规律以及率相关规律,并对老化前后的应力应变曲线进行了比较分析。采用忽略低应变率项、含五参数模型的“朱王唐”本构模型,对老化前后的PBX进行了本构曲线的拟合,结果表明该模型能较好地描述以HMX为基的PBX在高应变率下的力学行为,同时拟合出的五个参数并不是常数,而是与应变率相关。
The main work of the dissertation is as follows:
     1. In the first chapter of this dissertation, the effective mechanical properties and the constitutive relations of PBX were reviewed. On the basis of many references, we take PBX into consideration as main work of this dissertation. This dissertation composed of two parts: one is the elastic properties of PBX by micromechanics-based methods, the other is the mechanical behavior and the constitutive relations in quasi-static and dynamic (means in various strain rate)state are explored.
     2. It is focused on the study of TATB-based PBX, the effective elastic properties of PBX can be obtained by three classical micromechanical models if the elastic properties of the components are known. The bulk modulus and shear modulus of PBX-2 are computed by these theoretical models. The results show that "Hashin-Shtrikman" model and "Third-order bounds"model are better than "Reuss-Voigt bounds" model.
     3. The samples with different densities were prepared to conduct compressive tests to measure elastic modulus. On the basis of the micromechanics, A new term named "interface bonding parameter" which contains the density of the bulk PBXs was promoted and a modified model of Hashin-Shtrikman model was obtained. The elastic modulus were calculated by classical Hashin-Shtrikman model and by modified model respectively. The results show that the modified model with "interface bonding parameter" can give much more accurate estimates compared to classical hashin-shtrikman model. It proves that the modified Hashin-Shtrikman can be used to predict well the effective modulus of double-composition PBXs.
     4. The stress-strain relations of two TATB-based PBX are measured by experiment in quasi-static state. And the elastic modulus and compress strength with the strain rate are investigated respectively. As a result, the two parameters, that can characterize the rate denpendency of matrerials, have been obtained. The results show that PBX-2 has less dependency of strain rate than that of PBX-1。
     5. On the basis of Lemaitre damage evolution laws , the modified damage evolution laws which is applicable for various strain rate of PBX are derived. Consideration that strain rate effect, the nonlinear damage evolution constitutive equations at low strain rate are obtained. The results show that the constitutive equations can describe the mechanical behavior of PBX at low strain rate.
     6. By the help of Hopkinson bar, the dynamic stress-strain relations of HMX-based PBX with fresh and aged samples are measured respectively. The relationship between fresh and aged samples of dynamic compress strength and rate-dependency laws are explored respectively. At last, the stress-strain relations with fresh and aged samples are compared also.
     By using the simplified ZWT model, which be ignored the item of low strain rate -that is include five parameters, the constitutive relations are fitted with fresh and aged samples. The results show that "simplified ZWT model" can describe the mechanical behavior of HMX-based PBX at high strain rate. The results also show that the five fit parameters are not constants, but related to the strain rate.
引文
[1]陈鹏万,丁雁生.含能材料的细观损伤[J].火炸药学报.2001,24:58-61.
    [2]雷卫国,武杰灵.破碎燃烧高能气体压裂装药损伤对DDT行为的影响.火炸药学报[J].2003,26:23-25.
    [3]陈广南,张为华等.固体推进剂裂纹摩擦热点形成细观模型分析[J].国防科技大学学报.2006,28:5-8.
    [4]丁雁生,潘颖.PBX材料的蠕变损伤本构关系[J].含能材料,2000,8(2):86-90.
    [5]Ferry J D.Viscoelastic properties of polymers[M].2nd Ed.John Wiley,New York,1970.
    [6]Wald J W.Mechanical propterties of solid polymers[M].Wiley-interscience,London,1970.
    [7]罗景润,简单拉伸下高聚物粘结炸药的非线性本构关系[J].含能材料,2000,8(3):42-45.
    [8]韩小平,张元冲.含能材料动态力学性能实验研究[J].爆炸与冲击,1995,15(1):20-27.
    [9]罗景润,李大红.简单拉伸下高聚物粘结炸药的损伤测量及损伤演化研究.高压物理学报.2000,14(3):203-208.
    [10]吴会民,卢芳云.三种含能材料力学行为应变率效应的实验研究[J].含能材料,2004,12:227-230.
    [11]吴会民,卢芳云.一种高聚物粘结炸药和B炸药的本构关系研究[J].高压物理学报.2005,19:139-144
    [12]Johnson G R,Cook W H.A constitutive model and data for metals subjected to large strain,High strain rate and high temperature[A].15th international symposium on ballistics[C].Hague,Netherlands,1983,1-7.
    [13]韩小平,张元冲,沈亚鹏等.Comp.B复合炸药动态压缩力学性能和本构关系研究[J].实验力学,1996,3:303-309.
    [14]Biswajit Banerjee.Micromechanics-based prediction of themoelastic properties of high energy materials[D].Utah:the university of Utah,2002.
    [15]罗景润.PBX损伤断裂及本构关系研究[D].绵阳:中国工程物理研究院,2001.
    [16]R.Hill.Elastic properties of reinforced solids:some theoretical principles[J].Mech.Phys.Solids,1963,11:357-372.
    [17]Z.Hashin,S.Shtrikman.A variational approach to the theory of the elastic behavior of multiphase materials[J].Mech.Phys.Solids.1963,11:137-140.
    [18]G.W.Milton.Bounds on the electromagnetic,elastic and other properties of two-composite materials[J].Int.Engng.Sci.1981,8:542-545.
    [19]Z.Hashin.The elastic moduli of heterogenerous materials[J].Appl.Mech,1962,29:143-150.
    [20]K.Z.Markov.Elementary micromechanics of heterogeneous media.In Heterogeneous Media[J].Micromechanics Modeling Methods and Simulations.2000,1-162.
    [21]J.G.Berryman,P.Berge.Critique of two explicit schemes for estimating elastic properties of multiphase composites[J].Mech.Mater 1996,22:149-164.
    [22]S.Jun,I.Jasiuk.Elastic moduli of two-dimensional composites with sliding inclusions-a comparison of effective medium theories[J].Int.Solids Struct.1993,30:2501-2523.
    [23]杨庆生.复合材料细观结构力学与设计[M].北京:中国铁道出版社,2000.
    [24]R M Christensen,K H Lo.Solutions for effective shear properties in three sphere and cylinder models[J].Mech Phys Solids,1979,27:315-330.
    [25]D.F.Adams,D.F.Doner.Transverse normal loading of a unidirectional compsite[J].Composite Materials,1967,11:152-164.
    [26]D.F.Adams,D.F.Doner.Longitudinal shear loading of a unidirectional composite[J].Composite Materials,1967,11:4-17.
    [27]D.F.Adams,S.W.Tsai.The influence of random filament packing on the transverse stiffness of unidirectional composites[J].Composite Materials.,1969,3:368-381.
    [28]D.F.Adams,D.A.Crane.Finite element micromechanical analysis of a unidirectional composite including longitudinal shear loading[J].Computers and Structures,1984,18:1153-1164.
    [29]L.L.Mishnaevsky,S.Schmauser.Continuum mesomechanical finite element modeling in materials development:A state-of-the-art review[J].Appl.Mech.Rev,2001,54:49-66.
    [30]S.Pecullan,L.V.Gibiansky,S.Torquato.Scale effects on the elastic behavior of periodic and hierarchical two-dimensional composites[J].Mech.Phys.Solids.1999,47:1509-1542.
    [31]Biswajit Banerjee,Daniel O.Adams.Micromechanics-based determination of effective elastic properties of polymer bonded explosives.Physica B.2003,338:8-15.
    [32]L.Holliday,G.Thackray.Heterogeneity in complex materials and the concept of the representative cell.Nature,1964,2011:270-272.
    [33]K.Sab.On the homogenization and the simulation of random materials[J].European Mech.A/Solids,1992,11:585-607.
    [34]S.Jia,G.L.Povirk.Modeling the effects of reinforcement distribution on the elastic properties of composite materials.Modeling Simul.Mater Sci.Eng.16:587-602
    [35]N.Ramakrishnan,,A.M.Kumar,B.V.Radhakrishna Bhat.A generalized plane strain technique for estimating effective properties of particulate metal matrix composites using FEM[J].Materials Science,1996,31:3507-3512.
    [36]A.R.Day,K.A.Snyder,E.J.Garboczi,et al.The elastic moduli of a sheet containing circular holes[J].Mech.Phys.Solids,1992,40:1031-1051.
    [37]Y.Toi,T.Kiyoshe.Damage mechanics models for brittle microcracking solids based on three-dimensional mesoscopic simulations[J].Engg.Fracture Mech,1995,50:11-27.
    [38]F.J.Rizzo,D.J.Shippy.A formulation and solution procedure for the general non-homogeneous inclusion problem[J].Int.Solids Struct.1968,4:1161-1179.
    [39]P.S.Theocaris,G.E.Stavroulakis,P.Panagiotopoulos.Negative Poisson's ratio in composites with star-shaped inclusions:a numerical homogenization approach[J].Arch.Appl.Mech,1997,67:274-286.
    [40]J.D.Achenbach,H.Zhu.Effect of interfacial zone on mechanical behavior and failure of fiber-reinfored composites[J].Mech.Phys.Solids.1989,37:381-393.
    [41]H.Moulinec,P.Suquet.A numerical method for computing the overall response of nonlinear composites with complex microstructure[J].Comput.Methods Appl.Mech.Engrg.,1998,157:69-94.
    [42]A.A.Gusev.Representative volume element size for elastic composites:a numerical study[J].Mech.Phys.Solids,1997,45:1449-1459.
    [43]Eshelby,J.D.,The determination of the elastic field of an ellipsoidal inclusion,and related problems,Proc.Roy.Soc.Lond.A,1957,241:376-396.
    [44]肖继军,谷成刚,方国勇,等.TATB基PBX结合能和力学性能的理论研究[J].化学学报,2005,63(6):439-444.
    [45]Xiao J J,Huang Y C,Hu Y J,et al.Molecular dynamics simulation of mechanical properties of TATB/fluorine-polymer PBXs along different surfaces[J].Science in China 2005,48(6):21-26.
    [46]黄玉成,胡应杰,肖继军,等.TATB基PBX结合能的分子动力学模拟[J].物理化学学报,2005,21(4):425-429.
    [47]朱伟,肖继军,黄辉,等.MD模拟温度对TATB和TATB/F2311PBX力学性能的影响[J].南京理工大学学报,2007,31(2):243-247.
    [48]Heijden V D and Bouma R H B.Shock sensitivity of HMX/HTPB PBX's:relation with HMX crystal density.In:29~(th) International Annual Conference of ICT,Karsruhe,FGR,30 June-3 July,1998.
    [49]Howe P M.Conley P and Benson D.Microstructural effects in shock ignition.In:11~(th) International Detonation Symposium,Colorado,31 August-4 September,1998:768-780.
    [50]Lefrancois A and Demol G.Increase of sensitivity of HMX-based pressed explosives resulting of the damage induced by the hydrostatic compress.In:29~(th) International Annual Conference of ICT,Karsruhe,FGR,30 June-3 July,1998.
    [51]Idar D J.Low amplitude insult project:PBX9501 high explosive violent reaction experiments:Howe P M.Conley P and Benson D.Microstructural effects in shock ignition.In:11~(th) International Detonation Symposium,Colorado,31 August-4 September,1998:101-110.
    [52]Christopher F R,Foster J C.The use of impact techniques to characterize the high rate mechanical properties of plastic bonded explosives[A],11th Proceedings of detonation symposium[C].1998:286-292
    [53]Li Ying-lei,Li Da-hong,HU Shi-sheng,et al.An experimental study on constitutive relation of TATB explosive[J].Explosion and shock waves.1999,19(4):355-359
    [54]卢芳云.软材料中的高应变率本构行为的实验研究结题报告.国家自然科学基金,2004.
    [55]董海山,周芬芬.高能炸药及相关物性能[M].北京:科学出版社,1989.
    [56]Cady H H,Larson A C.The crystal structure of 1,3,5-triamino-2,4,6-trinitrobenzne.Acta Cryst,1965,18(3):485-496.
    [57]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [58]Kachanov L M.Introduction to continuum damage mechanics.Netherlands:Martinus Nijhoff Publishers,1996.
    [59]Lemaitre J.A course on damage mechanics.Berlin:Spring-Verlag,1992.
    [60]谢和平.岩石与混凝土损伤力学[M].北京:中国矿业大学出版社,1990.
    [61]杨光松.损伤力学与复合材料损伤[M].北京:国防工业出版社,1995.
    [62]吴会民.几种含能材料本构关系研究[D].长沙:国防科学技术大学,2003.
    [63]Sun Woo Park,Y.Richard Kim,Richard A.Schapery.A viscoelastic continuum damage model and its application to uniaxial behavior of asphalt concrete[J].Mechanics of Materials,1996,24:241-255.
    [64]Schapery R A.A micromechanical model for nonlinear viscoelaatic behavior of particle reinforced rubber with distributited damage.Engineering fracture mechanics,1986,25:845-867.
    [65]王礼立.应力波基础[M].北京:国防工业出版社,2005.
    [66]H.考尔斯基著.固体中的应力波[M].北京:科学出版社,1966.
    [67]Nemat-Nasser,S.,Isaacs,J.B.et al,1991.Hopkinson techniques for dynamics recovery experiments[J].Proceedings of the Royal Society of London,Series A,1991,435:371-391.
    [68]Rayleigh,Lord.On Waves Progaated along the Plan Surface of an elastic Solid.Proc.London Math.Soc.17(4).
    [69]Yang,L.M.,Shim,P.V.W.,2005.An analysis of stress uniformity in split Hopkinson bar test specimens[J].International Journal of Impact Engneering,2005,31(2):129-150.
    [70]李英雷,李大红,胡时胜.TATB钝感炸药本构关系实验研究[J].爆炸与冲击,1999,19(4):353-359.
    [71]卢芳云,林玉亮,王晓燕,吴会民.含能材料的高应变率响应实验[J].火炸药学报,2006,29(1):1-4.
    [72]宋力,胡时胜.软材料的霍普金森压杆测试新技术[J].工程力学,2006,23(5):24-28.
    [73]宋力,胡时胜.一种用于软材料测试的改进SHPB装置[J].实验力学,2004,19(4):448-452.
    [74]卢芳云,W.Chen,D.J.Frew.软材料的SHPB实验设计[J].爆炸与冲击,2002,22(1):15-19.
    [75]Locker F J.Nonlinear Viscoelasticity Solids[M].London,1972.
    [76]Green A E,Rivlin R S.Arch.Rat.Mech.Anal.1957,1:1-21.
    [77]Szyszkowski W,Dost S,Glocker P G.A nonlinear constitutive model for ice.Int.J.Solids Structure.1985,21:307-321.
    [78]Szyszkowski W,Glockner P G.On a multiaxial nonlinear hereditary constitutive low for non-aging materials with fading memory.Int.J.Solids Structure,1987,23:3053-3077.
    [79]朱兆祥.论非线性应变.力学进展.1983,13:259-272.
    [80]Chu Chaoshiang,Wang Lili,Xu Daben.A nonlinear thermo-viscoelastic constitutive equation for thermost plastics at high strain-rates.Proceeding of the International Conference on Nonlinear Mechanics,Shanghai.1985:92-97.
    [81]Cochran,J.,Lee,K.J.,Mcdowell,D.L.Low density monolithic metal honeycombs by thermal chemical processing[A].Proceedings of the 4~(th) Conferenceon Aerospace Materials,Processes and Environ mental Technology[C].Huntsville,AL,2000.25-38.
    [82]Cochran,J.,Lee,K.J.,Mcdowell,D.L.,etal.Multifunctional Metallic Honeycombs by thermal chemical processing[A].Proceedings of the 2002 TMS Annual Meeting.Processing and Properties of Light weight Cellular Metals and Structures[C].Seattle,WA:TMS,2002.127-136.22.
    [83]唐志平,田兰桥,朱兆祥,王礼立.第二届全国爆炸力学会议文集.扬州,1981.
    [84]周风华,王礼立,胡时胜.有机玻璃在高应变率下的损伤型非线性粘弹性本构关系及.破坏准则.爆炸与冲击,1992,12(4):333-342.
    [85]王礼立,施绍裘,陈江瑛等.ZWT非线性粘弹性本构关系的研究与应用.宁波大学学报(理工版).2000,139(增刊):141-149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700