用户名: 密码: 验证码:
锚杆加固对裂隙岩体力学性能影响的室内试验和数值分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锚杆支护技术是一种非常有效和经济的岩土结构加固方法,广泛地运用于几乎所有的土木工程建设中。随着社会经济的发展,更多的岩土结构工程将会被修建,作为工程建设中重要支护措施之一的锚杆加固技术将有着长远的发展前景。在岩体工程中,由于岩体中含有大量的天然裂隙,锚杆加固技术对岩体工程的支护效果尤为明显。尽管如此,锚杆的加固机理至今尚未被研究清楚,为了更加有效地使用锚杆以保障岩体工程的施工安全性和长期稳定性,有必要就锚杆对裂隙岩体的加固效应进行进一步的研究。
     本研究主要从室内试验和数值模拟两方面来研究锚杆加固对裂隙岩体的力学性能的影响,通过综合分析研究结果得出一些有益于实际锚杆设计、施工的结论。
     在室内试验阶段,主要对三类试件进行研究,分别是完好试件、裂隙试件、加锚裂隙试件。它们的关系是:裂隙试件是在完好试件内部预置一个张开型裂隙,而加锚裂隙是在裂隙试件的内部设有锚杆,加锚裂隙试件中锚杆的锚固角有30°、45°、70°、85°四种,锚杆的个数分别有单根、双根、三根三种,不同锚固角和锚杆个数的组合形成了各种不同的加锚裂隙试件。室内试验研究的主要工作包括以下几个内容:
     首先,为研制出一种与实际岩体物理力学参数满足一定相似比关系的砂浆材料,设计了五组砂浆材料的配合比,并对各种配合比的砂浆完好试件进行单向压缩和劈裂试验研究,最终确定出满足相似比要求的砂浆配合比,依此相似比关系选择出一种合金铝棒作为室内试验的相似锚杆。
     其次,对裂隙试件、加锚裂隙试件进行单向压缩和劈裂试验研究,结合第一阶段的试验结果,分别研究单向压缩和劈裂条件下预置裂隙对砂浆材料的弱化效应以及锚杆对裂隙试件的加固效应,并获得加锚裂隙试件的单轴抗压强度及在劈裂条件下峰值荷载随锚固角度及锚杆个数增加而变化的规律。
     最后,对完好试件、裂隙试件、加锚裂隙试件进行双向压缩试验研究。研究了在不同侧压条件下预置裂隙对砂浆材料的弱化效应以及锚杆对裂隙试件的加固效应,并获得在双向压缩条件下加锚裂隙试件的抗压强度随锚固角度及锚杆个数增加而变化的规律以及各种试件的双向抗压强度随侧压增加而变化的规律。
     通过包括单向压缩、劈裂和双向压缩的综合室内试验研究,获得了锚杆个数及锚固角度对裂隙试件力学强度的影响规律;此外,通过比较各种试验条件下试件的破坏形态,研究不同试验条件下锚杆的失效模式以及锚杆对试件破坏发展过程的影响。
     在数值模拟阶段,使用FLAC-3D软件对完好试件、裂隙试件、加锚裂隙试件的单向压缩试验进行数值模拟,获得的各种试件的数值应力-应变曲线、砂浆材料的最大、最小主应力云图、加锚试件中锚杆的受力状态。在对加锚裂隙试件进行数值模拟时,采用FLAC-3D自带的桩结构单元来建立锚杆单元,分别采用实体单元模拟法与实体-等效法来模拟锚杆对裂隙试件的加固效果,数值模拟结果表明,实体-等效法模拟锚杆加固效果的计算结果与室内试验结果较为接近;以单锚裂隙试件的单轴压缩数值试验为例,得出了锚固角对裂隙试件力学性能的影响规律。
     结合室内试验与数值分析的研究结果,得出了锚杆个数及锚固角度对裂隙试件加固效应的影响规律,由于本研究中砂浆材料与锚杆材料的物理力学参数与实际岩体及锚杆严格满足相似比关系,故所得研究结果对实际工程活动具有较大的指导意义。
Rock bolting represents one of the most effective and economical geo-structural reinforcing technologies widely used in practical civil engineerings. It has great prospects as more civil constructions are to be built during the socio-economic development. In the field of rock mass engineering, the reinforcing effect of the rock bolt(s) on rock mass is much more obvious due to the large number of natural fractures in rock masses. However, the mechanism of anchorage is still not being studied clearly now. The effective use of the rock bolt(s) for constructing safety and long-term stability of the rock mass engineering requires further the research into rock bolts' anchorage effect upon rock mass.
     The research program studies the rock bolts' anchorage effects on fractured specimens' mechanical properties from the two perspectives: laboratory experiment and numerical simulation. With a comprehensive analysis of the research results, some useful directions are deduced for the design and installation of the practical rock bolt(s).
     In the laboratory experiment stage, the research objects are three kinds of specimens, namely intact specimens, fractured specimens and anchored-fractured specimens. Their relationship is as follows:
     Compared with intact specimen, fractured specimen is a specimen with an opening mode fracture, and anchored-fractured specimen is a specimen with fracture and rock bolt(s). Anchored-fractured specimen has 4 anchorage angles, which are 30 degrees, 45 degrees, 70 degrees and 85 degrees, and the numbers of rock bolts are single, binary and ternary. These 4 kinds of anchorage angles and 3 kinds of rock-bolt numbers constitute different anchored-fractured specimens.
     The main contents of the laboratory experiment are as follows:
     Firstly, design 5 groups of the mortar's mixing proportion; test these 5 different mixing-proportion specimens' uniaxial compressive strengths and splitting tensile strengths; define a mixing proportion that make the mortar specimen's physical and mechanical parameters accord with a fixed similar ratio compared to the real rock mass; choose aluminium alloy bar as the similar rock bolt based on the similar ratio.
     Secondly, test fractured and anchored-fractured specimens' uniaxial compressive strengths and splitting tensile strengths; combined with the testing results of the intact specimens' uniaxial compression and splitting test, analyze the fracture's weakening effects and rock bolts' strengthening effects on the specimens' mechanical properties; summarize the disciplines of anchorage angle and rock- bolt number influencing the anchorage effects of the rock bolt(s) to the fractured specimens.
     Lastly, launch biaxial compressive test to intact specimens, fractured specimens, and anchored-fractured specimens; analyze fracture's weakening effects and rock bolts' strengthening effects on the specimens' mechanical properties under different lateral pressures; summarize the disciplines of anchorage angle and rock- bolt number influencing the anchorage effects of the rock bolt(s) to the fractured specimens under different lateral pressures and study the influence of lateral pressure on different specimens' biaxial compressive strengths.
     In addition, the specimens' mechanical properties influenced by the rock-bolt number and anchorage angle are studied; the rock bolts' failure patterns and its influences on the specimens' destruction process are also observed.
     In the numerical simulation stage, the axial compressive experiment of the three kinds of specimens including intact specimens, fractured specimens and anchored-fractured specimens is simulated by FLAC-3D; obtain the different specimens' numerical stress vs. strain curves, mortar's contour of the minimum and maximum principle stress, and the stress or force state of the rock bolt(s). Use the included pile element of FLAC-3D to simulate the rock bolt(s) while simulating the anchored-fractured specimens' axial compressive experiment. Adopt the two methods of solid-entity method and solid-entity and equivalence compounding method to simulate rock-bolt anchorage effect on the fractured specimens' mechanical properties. The solid-entity and equivalence compounding method's simulation result is much better than the solid-entity method in terms of multi-rock-bolt's reinforcing effect comparing to the results of laboratory experiment. Besides, by taking the single-anchored fractured specimen's axial compressive experiment as an example, one discipline of the anchorage angle influencing the anchorage effect is got by the simulation of FLAC-3D.
     The discipline about the rock bolt's number and anchorage angle on rock-bolt anchorage effect to fractured specimens is obtained by summarizing the results of the laboratory experiment and numerical simulation. The results of this research will be significant for the practical engineering, since the materials' mechanical and physical parameters used in laboratory experiment and numerical simulation are strictly accordant to a fixed similar ratio comparing the real materials.
引文
[1]孙静.锚杆在节理岩体中的加固作用机理和锚固效应分析及应用[D].武汉:中国科学院武汉岩土力学研究所,2003.
    [2]徐祯祥等.岩土工程锚杆理论与计算技术的发展与展望[M].第三次中国岩土工程锚固学术研讨会,北京,2004.
    [3]陆佩文等.硅酸盐物理化学[M].南京:东南大学出版社,2003.
    [4]关振铎,张中太,焦金生.陶瓷材料物理性能[M].北京:清华大学出版社,2003.
    [5]Griffith A.A.The phenomena of ruptures and flow in solids[J].Phil.Trans,1920,Ser.A:163-198.
    [6]Griffith A.A.The phenomena of ruptures and flow in solids[J].Phil.Trans.Royal Soc.London,1921,Set.A:221-263.
    [7]Griffith A.A.The theory of rupture[C].Proc.1st Int.Congr.Applied Mech.,Delft,1924:55-63.
    [8]李庆芬等.断裂力学及其工程应用[M].哈尔滨:哈尔滨工程大学出版社,2006.
    [9]Cook N.G.W.The failure of rock[J].Int.J.Rock Mech.Min.Sci.,1965,21(2):389-403.
    [10]Fairhurst,C.& Cook N.G.W.The phenomenon of rock splitting parallel to the direction of maximum compression in the neighborhood of a surface crack[C].Proc.First Congress International Society for Rocks Mechanics,Lisbon,1966.
    [11]Kemeny J.& Cook N.G.W.Effective Moduli No-linear Deformation and Strength of a Cracked Elastic Solid[J].Int.J.Rock Mechanics.Min.Sci.& Geomech.Abstr.1986,23(2):107-118.
    [12]Kemeny J.& Cook N.G.W.Micromechanics of Deformation in Rock[M].In:Toughening Mechanism in Quasi-Brittle Materials.Kluwer Academic Publishers,Netherlands,1991.
    [13]Kemeny J.M.,Cook N.G.W.and Wong T.F.Crack models for the failure of rock under compression[C].Pro.2nd Int.Conf.Constitutive Laws for Engineer Materials,1987,26(2):879-887.
    [14]Brace W.F.and Bombolakis E.G.A note on brittle crack growth in compression[J].J.Geophys.Res.,1963,68(6):3709-3713.
    [15]E.G.Bombolakis.Photoelastic investigation of brittle crack growth within a field of uniaxial compression[J].Tectonophysics,1964,1(4):343-351.
    [16]E.G.Bombolakis.Photoelastic study of initial stages of brittle fracture in compression[J]Tectonophysics,1968,6(6):461-473.
    [17]N.C.Gay.Fracture growth around openings in thick-walled cylinders of rock subjected to hydrostatic compression[J].lnternational Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1973, 10(3): 209-218.
    
    [18] M. Friedman, J. Handin, G. Alani. Fracture-surface energy of rocks [J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1972, 9(6): 757-764.
    [19] N.C. Gay. Fracture growth around openings in large blocks of rock subjected to uniaxial and biaxial compression [J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1976, 13(8): 231-243.
    
    [20] D.E. Grady, M.E. Kipp .The micromechanics of impact fracture of rock [J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1979,16(5):293-302.
    [21] Hudson J.A. and Priest S.D.Discontinuities and Rock Mass Geometry [J]. Int. J. Rock Mech.Min. Sci. & Geomech. Abstra., 1979, 16(2): 339-362.
    [22] Priest S.D., Hudson J.A.Discontinuity Spacings in Rock [J]. Int. J. Rock Mech. Min. Sci.&Geomech.Abstra. 1976, 13(5): 135-148.
    [23] T.R. Stacey. A simple extension strain criterion for fracture of brittle rock[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.1981, 18(6): 469-474.
    
    [24] P.-A. Lindqvist, H.H. Lai, O. Aim .Indentation fracture development in rock continuously observed with a scanning electron microscope[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1984, 21(4): 165-182.
    
    [25] Nolen-Hoeksema R.C. and Gordon R.B.Optical detection of crack patterns in the opening-mode fracture of marble [J].Int. J. Rock mech. Mn. Sci. Geomech. Abdtr.1987,24(4): 135-144.
    
    [26] Nemat-Nasser S. and Horii H.Compression-induced nonlinear crack extension with application to splitting, exfoliation and rockburst [J]. J. Geophys Res., 1982,87(B8):6805-6821.
    [27] Nemat-Nasser S. and Obata M.M.A microcrack model of dilatancy in brittle material [J].Journal of applied mechanics, 1988, 55(2):24-35.
    [28] Horii H. & Nemat-Nasser S.Compression-Induced Micro-crack Growth in Brittle Solid:Axial splitting and Shear Failure [J].J. Geophys. Res. 1985, 90 (B4): 3015-3125.
    [29] Horii H. & Nemat-Nasser S.Overall moduli of solids with microcracks: Load-induced anaisotropy [J].J. Mechs. Solids. 1983,1983,31(2): 155-171.
    
    [30] Horii H. & Nemat-Nasser S. Brittle failure in Compression: splitting and brittle-ductile transition [J].Philosophical Transactions of the Royal Society of London, Series A,1986,319(3): 337-374.
    [31] Ashby M.F. & S.D. Hallam. The failure of brittle solids containing small cracks under compressive stress states [J]. Acta Metallurgical 986,34: 497-510.
    [32] Sammis C.G. and Ashby M.F.The failure of brittle porous solids under compressive stress states [J]. Acta metall,1986,34(3): 511- 526.
    [33] Kachanov M.L.A microcrack model of rock in elasticity part I friction sliding on microcracks [J].Mechanics of materials, 1982,23(1): 19-27.
    [34] Kachanov M.L. A microcrack model of rock in elasticity part II propagation on microcracks[J].Mechanics of materials,1982b,23(1): 29-41.
    [35] Kachanov L.M.Introduction to Continuum Damage Mechanics [M].Martinus Nijh of publishers,Dordrecht,The Netherlands, 1986.
    [36] S. Wang .Combined compressive-shear fracture of rocks[J].Theoretical and Applied Fracture Mechanics. 1988, 10(2): 151-156.
    [37] I. Yamada, K. Masuda, H. Mizutani. Electromagnetic and acoustic emission associated with rock fracture[J].Physics of The Earth and Planetary Interiors. 1989, 57(1-2): 157-168.Light and charge emissions from rock during fracture: Applications to mining.
    [38] Reyes O. Experimental study and analytic modeling of compressive fracture in brittle materials [D].England: Mass. Inst. Of Technol., Cambridge, 1991.
    [39] Reyes O. and Einstein H.H. Fracture mechanism of fractured rock—a fracture coalescence model [C]. Proc. 7th Int. Conf. On Rock Mech. ,1991, 10(1): 333-340.
    [40] Shen B. and Barton N.The disturbed zone around tunnels in jointed rock masses[J]. Int.J.Rock Mech. Min. Sci. ,1997, 34(1): 117-125.
    [41] Shen B. , Stephansson O. ,Einstein H.H. et al. Coalescence of fractures under shear stress experiments [J]. Journal of Geophysical Research, 1995, 100(6): 5975-5 990.
    [42] Shen B., Stephansson O. Numerical analysis of model I and model II propagation of fractures [J]. Int. J. Rock Mech.Min.Sci. special issue for the 34th U.S. Symposium on rock mechanics, 1993.
    [43] Shen B. The mechanism of fracture coalescence in compression experimental study and numerical simulation [J]. Engineering Fracture Mechanics, 1995,51(1):73-85.
    [44] Bobet A., Einstein H.H. Fracture coalescence in rock-type material under uniaxial and biaxial compression[J].International Journal of Rock Mechanics and Mining Sciences, 1998,35(7):863-888.
    [45] Bobet A.The initiation of secondary cracks in compression[J]. Engineering Fracture Mechanics,2000,66:187-219.
    [46] Bobet A. and Einstein H.H. Fracture Coalescence in Rock-type Material under Uniaxial and Biaxial Compression[J].Int.J.Rock Mech.Min.Sci.,1998,35(7):836-888.
    [47]Vasarhelyi B.and Bobet A.Modeling of crack initiation,propagation and coalescence in uniaxial compression[J].Rock Mechanics and Rock Engineering,2000,33(2):129-139.
    [48]朱维申,陈卫忠,申晋.雁形裂纹扩展的模型试验及断裂力学机制研究[J].固体力学学报,1998,19(4):355-360.
    [49]朱维申,李术才,陈卫忠著.节理岩体破坏机理和锚固效应及工程应用[M].北京:科学出版社,2002.
    [50]朱维申,申晋,赵阳升.裂隙岩体渗流耦合模型及在三峡船闸分析中的应用[J].煤炭学报,1999,3:289-293.
    [51]朱维申等.节理岩体强度特性的物理模拟及其强度预测分析[R]武汉:中国科学院武汉岩土力学研究所,1992.
    [52]李术才.加锚断续节理岩体断裂损伤模型及其应用[D].武汉:中国科学院武汉岩土力学研究所,1996.
    [53]李术才.节理岩体力学特性和锚同效应分析模型及应用研究[R].武汉:武汉水利电力大学,1999.
    [54]李术才,李树忱,朱维申,简浩等.裂隙水对节理岩体裂隙扩展影响的CT实时扫描实验研究[J].岩石力学与工程学报,2004,23(2 1):3584-3590.
    [55]李新平,朱维申.多裂隙岩体的等效弹性损伤连续模型及有限元分析[C].第四届全国岩土力学数值分析与解析方法讨论会论文集,1991,1-7.
    [56]徐靖南,朱维申,白世伟.压剪应力作用下多裂隙岩体的力学特性-断裂损伤演化方程及试验验证[J].岩土力学,1994,15(12):1-12.
    [57]徐靖南,朱维申.压剪应力作和下多裂隙雁行破坏机制及强度判定准则[R].武汉:中国科学院武汉岩土力学研究所,1992.
    [58]徐靖南.脆性材料裂纹尖端微结构的研究[R].武汉:中国科学院武汉岩土力学研究所,1992.
    [59]徐靖南.压剪应力作用下多裂隙岩体的力学特性-理论分析与模型试验[D].武汉:中国科学院武汉岩土力学研究所,1993.
    [60]简浩,李术才,朱维申等.含裂隙水脆性材料单轴压缩CT分析[J].岩土力学,2002,23(5):587-591.
    [61]简浩,朱维申,李术才等.模拟节理岩体水压致裂的CT实时试验初探[J].岩石力学与工程学报,2002,21(11):1655-1662.
    [62]陈卫忠,李术才,朱维申等.岩石裂纹扩展的实验与数值分析研究[J].岩石力学与工程学报,2003,22(1):18-23.
    [63]陈卫忠.节理岩体损伤断裂时效机理及其工程应用[D].武汉:中国科学院武汉岩士力学研 究所,1997.
    [64]Chau K.T.and Wong R.H.C.Effective module of microcracked-rock:Theories and Experiments[J].International Journal of Damage Mechanics,1997,62(4):258-277.
    [65]Tang C.A.Numerical simulation of progressive rock failure and associated seismicity[J].Int.J.Rock Mech.Min.Sci.,1997,34(2):249-262.
    [66]Tang C.A.,Zhu W.C.,Yang T.H.,et al.lnfluence of heterogeneity on crack propagation mode in brittle rock under static load.Proceeding of Development and Application of Discontinuous Modelling for Rock Engineering.33-38,2003.Publisher:A.A.Balkema Publishers,BrRotterdam,Netherlands.ISBN:90-5809-610-6.
    [67]Tang C.A.,Lin P.,Wong R.H.C.and Chau K.T.Analysis of crack coalescence in rock~like materials containing three flaws-Part Ⅱ:Numerical approach[J].International Journal of Rock Mechanics and Mining Science,2001,38(7):925-936.
    [68]Wong R.H.C.and Chau K.T.Crack clalescence in a rock-like material containing two cracks[J].International Journal of Rock Mechanics and Mining Science,1998,35(3):147-161.
    [69]Wong R.H.C.,Chau K.T.et al.Analysis of crack coalescence in rock-like materials containing three flaws-Part Ⅰ:Experimental approach[J].International Journal of Rock Mechanics and Mining Sciences,2001,38(7):909-924.
    [70]Wong R.H.C.,Tang C.A.et al.Splitting failure in brittle rocks containing pre-existing flaws under uniaxial compression[J].Engineering Fracture Mechanics,2002,69(17):1853-1871.
    [71]Wong R.H.C.and Chau K.T.The coalescence of frictional cracks and the shear zone formation in brittle solids under compressive stresses[J].Int.J.of Rock Mech.& Min.Sci.,1997,34(3/4):366-380.
    [72]Huang M.L.,Wong R.H.C.,Wang S.Y.et al.Numerical studies of the influence of heterogeneity on rock failure with pre-existing crack in uniaxial compression[J].Key Engineering Materials,2004,261-263(11):1557-1562.
    [73]任伟中,白世伟,丰定祥.平面应力条件下闭合断续节理岩体力学特性试验研究[J].实验力学,1999,14(4):520-527.
    [74]任伟中,乇庚荪等.共面闭合断续节理岩体的直剪强度研究[J].岩石力学与工程学报,2003,22(10):1667-1672.
    [75]白世伟,任伟中,丰定祥,周少怀.共面闭合断续节理岩体强度特性直剪试验研究[J].岩土力学,1999,20(2):10-16.
    [76]郭少华.岩石类材料压缩断裂的实验与理论研究[D].湖南:中南大学,2003.
    [77]Erdogan F.and Sih G.C.On the crack extention in plates under loading and transverse shear trans[J].A.S.M.E.,J.Basic Engr.,1963,85D:519-527.
    [78]Sih G.C.Introduction Chapter,Mechanics of Fracture[M].Vol.1,Noordhoff of International Publishing),1973.
    [79]Sommer E.Formation of Fracture 'lances' in Glass[J].Engineering Fracture Mechanics,1969,1:539-546.
    [80]Knauss,W.G.An observation of crack propagation in anti-plane shear[J].Int.J.Fract.,1970,6(2):183-185.
    [81]滕春凯,尹祥础,李世愚等.非穿透裂纹平板试件三维破裂的试验研究[J].地球物理学报,1987,30(4):371-378.
    [82]尹祥础,李世愚,李红等.闭合裂纹面间相互作用的试验研究[J].地球物理学报,1988,31(3):307-314.
    [83]尹祥础,李世愚,李红等.脆性材料中非穿透裂纹扩展的研究[C].第十七届国际理论与应用力学大会中国学者论文集.北京:北京大学出版社,1991:156-166.
    [84]Adams,M.& Sines,G.1978.Crack extension from flaws in a brittle material subjected to compression.Tectonophysics,49:97-118.
    [85]黄明利,唐春安,梁正召.岩石裂纹相互作用的应力场分析[J].东北大学学报(自然科学版),2001,22(4):446-449.
    [86]黄明利,唐春安,朱万成.非均质岩桥对裂纹扩展贯通机制影响的数值分析[J].辽宁工程技术大学学报,2000,19(1):20-24.
    [87]黄明利,唐春安,朱万成.岩石单轴压缩下破坏失稳过程SEM即时研究[J].东北大学学报,1999,20(4):426-429.
    [88]Dyskin A.V,Sahouryeh E,Jewell R.J.,et al.Influence of shape and locations of initial 3-D cracks on their growth in uniaxial compression[J].Engineering Fracture Mechanics,2003,70(15):2115-2136.
    [89]Dyskin A.V.and Germanovich L.N.Model of crack growth in microcracked rock [J].lnternational Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1993,30(7):813-820.
    [90]Dyskin A.V.and Germanovich L.N.Model of rockburst caused by cracks growing near free surface[J].Proceedings of the 3rd International Symposium on Rockbursts and Seismicity in Mines,1993,169-175.
    [91]Dyskin A.V.,Germanovich L.N.,Jewell R.J.,et al.Some Experimental results on Three-dimensional crack propagation in compression[J].Proceedings of the 1995 2nd International Conference on the Mechanics of Jointed and Faulted Rock-MJFR-2,1995,1:91-96.
    [92]Dyskin A.V.,Jewell R.J.,Joer H.et al.Experiments on 3-D crack growth in uniaxial compression[J].Int.J.Frac.,1994,65(4):R77-R83.
    [93]Dyskin A.V.,Germanovich L.N.& Ustinov K.B.A 3-D model of wing crack growth and interaction[J].Engineering Fracture Mechanics,1999,63(1):81-10.
    [94]Dyskin A.V.& Germanovich L.N.A model of fault propagation in rocks under compression.Proc.35th US Symposium on Rock Mechanics,Balkema,Rotterdam and Brookfield,1995,731-738.
    [95]Dyskin A.V.Stress fluctuation mechanism of mesocrack growth,dilatancy and failure of heterogeneous materials in uniaxial compression[J].HERON,1998,43(3):137-158.
    [96]Dyskin A.V.and Germanovich L.N.,A model of crack growth in microcracked rock.Int.J.Rock Mech.Min.Sci.and Geomech.Abst.[J].1993,30(7):813-820.
    [97]Dyskin A.V.,Jewell,R.J.,Joer,et al.Experiments on 3-d crack growth in uniaxial compression [J].Intern.J.Fracture,1994,65(4):R77-R83.
    [98]Dyskin A.V.Effective characteristics and stress concentrations in materials with self~similar microstructure[J].International Journal of Solids and Structures,2005,42(2):477-502.
    [99]简浩.含水节理岩体损伤演化的CT实验分析及数值模拟研究[D].武汉:中国科学院武汉岩土力学研究所,2002.
    [100]WONG R.H.C.,HUANG M.L.,JIAO M.R.,et al.The mechanisms of crack propagationfrom surface 3D fracture under uniaxial compression[J].Key Eng.Materials,2004,261-263,219-224.
    [101]WONG R.H.C.,LAW C.M.,CHAU K.T.,et al.Crack propagation from 3~D surface fractures in PMMA and marble specimens under uniaxial compression[J].International Journal of Rock Mechanics and Mining Science,2004,41(3):360-366.
    [102]Wong R.H.C.,Huang M.L.,Jiao M.R.,et al.The mechanisms of crack propagation from surface 3-D fracture under uniaxial compression[J].Key Engineering Materials,2004,261-263,219-224.
    [103]Lin R,Wong R.H.C.,Chau K.T.and Tang C.A.Multi-crack coalescence in rock-like material under uniaxial and biaxial loading[J].Key Engineering Materials.2000,14(2):183-187 &809-814.
    [104]Lin P.,Wong R.H.C.,Chau K.T.et al.Experimental and numerical study on failure behavior of Hong Kong pre-existing pored granite[C].Hong Kong:Hong Kong Society of Theoretical and Alied mechanics,annual meeting,2000/2001.
    [105]Tang C.A.,Lin P.Wong R.H.C.and Chau K.T.Analysis of crack coalescence in rocklike materials containing three flaws-Part Ⅱ:Numerical approach[J].International Journal of Rock Mechanics and Mining Science,2001,38(7):925-936.
    [106]李术才,李延春等.单轴压缩作用下内置裂隙扩展的CT扫描试验[J].岩石力学与工程学报.2007,26(3):484-492.
    [107]KILIC A,YASAR E,CELIK A G.Effect of grout properties on the pun-out load capacity of fully grouted rock bolt[J].Tunnelling and Underground Space Technology,2000,17:355-362.
    [108]KILIC A,YASAR E,ATIS C D.Effect of bar shape on the pull-out capacity of fully grouted rock bolts[J].Tunnelling and Underground Space Technology,2003,18:1-6.
    [109]BENMOKRANE B,CHENNOUF A,MITR H S.Laboratory evaluation of cement-based grouts and grouted rock anchorlJ].Int J Rock Mech Min Sci & Geomech Abstr,1995,32(7):633-642.
    [110]BENMOKRANE B,XU Hai-xue,BELLAVANCE E.Bond strength of cement grouted ass fibre reinforce plastic(GFRP) anchor bolts[J].lnt J Rock Mech.Min Sci & Geomech Abstr,1996,33(5):455-465.
    [111]JENG F S,HUANG T H.The holding mechanism of under-reamed rockbolts in soft rock [J].Int J Rock Mech & Min Sci,1999,36:761-775.
    [112]荣冠,朱焕春,周创兵.螺纹钢与圆钢锚杆工作机理对比试验研究[J].岩石力学与工程学报,2004,23(3):469-475.
    [113]葛修润,刘建武.加锚节理面抗剪性能研究[J].岩土工程学报,1988,(1):7-18.
    [114]KHARCHAFI M,GRASSELLI G,EGGER E3D behaviour of bolted rock joints:Experimental and numerical study[A].In:ROSSMANlTH.Mechanics of Jointed and Faulted Rock[C].Rotterdam:Balkema,1998:299-304.
    [115]温进涛,朱维申,李术才.锚索对结构面的锚固抗剪效应研究[J].岩石力学与工程学报,2003,22(10):1699-1703.
    [116]朱焕春,吴海滨.反复张拉荷载作用下锚杆工作机理试验研究[J].岩土工程学报,1999(6):662-665.
    [117]朱焕春,荣冠.张拉荷载全长黏结锚杆工作机理试验研究[J].岩石力学与工程学报,2002,21(3):379-384.
    [118]陈安敏,顾金才.预应力锚索的长度与预应力值对其加固效果的影响[J].岩石力学与工程学报,2002,21(6):848-852.
    [119]SPANG K,EGGRE P.Action of fully-grouted bolts in jointed rock and factors of influence[J].Rock Mechanics and Rock Engineering,1990,23(3):201-229.
    [120]邹志晖,汪志林.锚杆在不同岩体中的工作机理[J].岩土工程学报,1993(6):71-79.
    [121]侯朝炯,勾攀峰.巷道锚杆支护围岩强度机理研究[J].岩石力学与工程学报,2000,19(3):342-345.
    [122]陈妙峰,唐德高.锚杆锚固机理试验研究[J].建筑技术开发,2003,30(4):21-23.
    [123]叶金汉.裂隙岩体的锚固特性及其机理[J].水利学报,1995(9):68-74.
    [124]朱维申,任伟中.船闸边坡节理岩体锚固效应的模型试验研究[J].岩石力学与工程学报,2001,20(5):720-725.
    [125]漆泰岳.FLAC2D3.3锚杆单元模型的修正及其应用[J].矿山压力与顶板管理,2003,4:50-52.
    [126]冯光明,冯俊伟,谢文兵,才庆祥.锚杆初锚力锚固效应的数值模拟分析[J].煤炭工程,2005,7:46-47.
    [127]张拥军,安里千,于广明等.锚杆支护作用范围的数值模拟和红外探测实验研究[J].中国矿业大学学报,2006,35(4):545-548.
    [128]杨典森.锚固岩体等效参数数值模拟研究及应用[D].武汉:中国科学院武汉岩士力学研究所,2004.
    [129]宋宏伟.非连续岩体中锚杆横向作用的新研究[J].中国矿业大学学报,2003,32(2):161-164.
    [130]徐东强,李占金,田胜利.锚杆安装载荷作用机理的数值模拟[J].河北理工学院学报,2002,24(3):1-5.
    [131]李金奎,田金栋,谢德瑜,侯建民.锚杆对含纵向裂隙气体结构墙体刚度的数值模拟研究[J].河北建筑科技学院学报,2004,21(2):22-23.
    [132]李梅.三维锚杆的数值模拟方法[J].福州大学学报(自然科学版),2003,31(5):588-592.
    [133]李永和.开孔卸压与锚杆加固联合支护的边界元分析[J].岩石力学与工程学报.1988,7(3):237-247.
    [134]朱浮声,李锡润,王泳嘉.锚杆支护的数值模拟方法[J].东北工学院学报,1989,1:1-7.
    [135]郭兰波.锚杆支护问题的边界元分析法[J].安徽理工大学学报.1984,1.
    [136]刘承论,张立钊,赵迁乔,郑元忠.含锚杆钻孔线单元的3D-FSM-DDM边界元数值系统开发[J].岩石力学与工程学报.2008,27(12):2528-2534.
    [137]程东幸,潘炜,刘大安等.锚固节理岩体等效力学参数三维离散元模拟[J].岩土力学,2006,27(12):2127-2132.
    [138]郝跃天,何唐镛.离散元法中检索及锚杆问题[J].西安矿业学院学报.1990,1:1-7.
    [139]谭云亮,姜福兴等.锚杆对节理围岩稳定性影响的离散元研究[J].工程地质学报.1999,7(4):361-365.
    [140]任建华,康建荣等.锚杆加固条带煤柱的离散元模拟分析[J].山西矿业学院学报.1997,15(2):137-141.
    [141]焦玉勇,葛修润等.三维离散元法中地下水及锚杆的模拟[J].岩石力学与工程学报.1999,18(1):6-11.
    [142]姜清辉,王书法.锚固岩体的三维数值流形方法模拟[J].岩石力学与工程学 报,2006,25(3):528-532.
    [143]董志宏,邬爱清,丁秀丽.数值流形方法中的锚固支护模拟及初步应用[J].岩石力学与工程学报,2005,24(20):3754-3760.
    [144]王书法,朱维申,李术才等.加锚岩体变形分析的数值流形方法[J].岩石力学与工程学报.2002,21(8):1120-1123.
    [145]佀赟,王晖.岩石边坡锚同机理研究综述[J].水利科技与经济,2005,11(8):467-469.
    [146]温暖冬.裂隙岩体锚固方式优化的试验与数值模拟研究[D].济南:山东大学.
    [147]肖明.地下洞室隐式锚杆柱单元的三维弹塑性有限元分析[J].岩土工程学报,1992,14(5):19-26.
    [148]张强勇.多裂隙岩体三维加锚损伤断裂模型及其数值模拟与工程应用研究[D].武汉:中国科学院武汉岩土力学研究所,1998.
    [149]李宁,赵彦辉.单锚的力学模型与数值仿真试验分析[J].西安理工大学学报,1997,13(1):6-11.
    [150]切列帕诺夫.脆性断裂力学[M],科学出版社.1990
    [151]尹祥础.固体力学[M].北京:地震出版社.1985
    [152]唐辉明,晏同珍.岩体断裂力学与工程应用[M].北京:中国地质大学出版社,1993
    [153]沈成康.断裂力学[M].上海:同济大学出版社.1996
    [154]范天佑.断裂理论基础[M].北京:科学出版社.2003
    [155]张向东,张树光,刘松.锚杆支护配套技术设计与施工[M].北京:中国计划出版社,2003.
    [156]程良奎,范景伦等.岩土锚同[M].北京:中国建筑工业出版社,2002.
    [157]张强勇.岩土工程概论[M].济南:山东大学,2006.
    [158]T H.汉纳.锚固技术在岩土工程中的应用.北京:中国建筑工业出版社,1987.
    [159]张发明,邵蔚侠.岩质高边坡预应力锚固问题研究.河海大学学报,1999(11):73-76.
    [160]黄福德,吕祖街.预应力群锚高边坡增稳机理研究.岩土锚固新技术,人民交通出版社,1998:90-94.
    [161]张培胜.岩土锚杆的锚固力学特性研究[D].重庆:重庆大学.
    [162]袁文忠.相似理论与静力模型试验[M].成都:西南交通大学出版社,1998.
    [163]张磊.E 渣硅铝酸盐混凝土与多孔轻质混凝土力学性能研究[D].重庆:重庆大学,2006.
    [164]彭文斌.FLAC 3D实用教程[M].北京:机械工业出版社,2007.
    [165]刘波,韩彦辉等.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700