用户名: 密码: 验证码:
聚合物微流控芯片模内键合微通道变形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微流控芯片在生命科学、医学、化学、新药开发、食品和环境卫生监测等领域应用前景广阔,聚合物微流控芯片具有加工简单,低成本,易于批量生产等优点成为了研究热点,当前聚合物微流控芯片的成型工艺和键合工艺完全分开,自动化程度低,芯片制作周期长;本文对微流控芯片的模内键合技术展开研究,将为聚合物微流控芯片的注射成型和模内键合提供积累经验,为微流控芯片的批量、快速生产研究打下基础。
     首先,在聚合物粘合基础理论上从芯片键合力、表面张力和键合能出发,详细地分析了芯片的键合过程,在分析基础上提出微流控芯片的模内压缩键合方法,并对可行性进行了分析;研究了芯片键合应力、芯片表面质量、微通道变形和键合强度的产生原因及检测方法,研究表明基片和盖片的平面度对芯片键合应力和芯片表面微观质量影响较大,芯片表面洁净度主要影响到芯片表面微观质量,键合工艺参数影响微通道变形和键合强度。
     其次,设计对比了微流控芯片模内键合实验方案,并采用有限元法对1mm厚基片内宽0.1mm高0.04mm的微通道变形进行了仿真研究,结果表明:键合后微通道不能保持键合前的截面形状和尺寸精度,微通道的截面面积变小,其尺寸变化主要来于基片微通道尺寸向上凸起变形和盖片向下凸起两个方面,而微通道宽度尺寸基本保持不变;随着温度和压缩厚度增加,通道变形量增加,压缩厚度影响程度大于温度,微通道的变形随着盖片厚度的增加而减小,但减小变化不明显。
     再次,设计了一套芯片模内键合实验模具,实验研究了1mm厚的盖片和基片的芯片模内键合,对芯片键合面微观质量和通道变形进行了检测,实验结果表明,键合后芯片内部具有封闭微通道,证明可以模内压缩来键合芯片;微通道变形主要发生在高度方向,在宽度方向变形很小,微通道变形随着压缩厚度、温度和时间增加呈增大趋势,但影响程度不同,压缩厚度对芯片内微通道变形影响最大,要明显大于键合温度和键合时间的影响,与仿真结果得出的影响规律相同;键合面非键合缺陷随着键合工艺参数的升高而得到改善,压缩厚度和温度影响较大,时间影响不明显。
The microfluidic chips were widly application in the field of life science, iatrology, new drugs exploitation,chemistry, foodstuff and enviroment inspecting etc.polymer microfluidic has been one hotspot of research because of its lower cost, simple produce procedure and easy for volume-producing. The conditional microfluidic chips manufacturing method were insufficient satisfied with the microfluidic manufacturing in large quantities for molding technology and bonding technology were compltely seperated. In this paper, the polymer microfluidic chips bonding in mold were introduced to solve the problems, and the research result will built the good foundation for microfluidic chips mass production.
     Firstly,the microfludic chips bonding force, surface tension of chips and bonding energy were introduced on the basic theoretics of polymer agglutination,and the microfluidic chips bonding process were analyzed in detail, the method of microfluidic bonding in mold were promoted , and the feasibility analysis of bonding in mold were studied .The cause and testing method of microfluidic chip bonding stress , bonding face micrcosmic disfigurement, microchannel ditortion and bonding intensity were presented. The study indicated that the flatness of substrate and cover plate influenced the bonding stress and bonding face micrcosmic disfigurement greatly, the lustration of chips affected the bonding face micrcosmic disfigurement,and bonding parameter played important roles in bonding intensity and the microchannel distortion.
     Secondly, microchannel distortion with the size of 0.1mm width and 0.04mm height in 1mm height substrate were studied by finite element softwre, results shows that the microchannel in substrate can not holding the cross-section shape and dimensional accuracy , the area of cross-section was decreased, the distortion of microchannel in height direction is more than width direction, and the dimensions of chip in width remain the same.The microchannel distortion increased with the compressed thickness and temperature increasement, the comprssed thickness affects the distortion more than temparature ,Microchannel distortion decreased with cover plate thickness increased ,but the decreasement is very small.
     Thirdly, A bonding mold was designed and the experiment of microfludic with 1mm cover plate was bonded in mold, then the bonding face micrcosmic disfigurement and microchannel distortion was detected.The study indicated that, there was a closed microchannel inside the microfludic, so the bonding method which comprssed mocroflucdic in mold was right.The micrchannel distortion mainly in height direction and the width direction was small,The distortion was increased with the increasement of compress thickness,temperature and time,and compress thickness affect the ditortion more than tempetature and time which was consistent to the simulation results,The experiment also indicated that increase the bonding parameters can improve the quality of bonding face micrcosmic disfigurement, the compress thickness and temperature affect the quality greatly ,and the bonding time affects the quality small.
引文
[1]林炳承,秦建华.微流控芯片实验室.北京,科学出版社,2005,1-10.
    [2]Lai S Y.design and fabrication of polymer-based microfludic platforms for biomedical applications.Doctor Philosophy of Ohio State University,Columbus,Ohio USA,2003.
    [3]Fan Z H,Harrison D J.Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections.Analysis Chemistry,1994,66(1):177-184.
    [4]王立顶,刘军山,于建群.集成毛细管电泳芯片研究进展.大连理工大学学报,2003,43(4):385-392.
    [5]殷学锋,方群,凌云杨.微流控分析芯片的加工技术.现代科学与仪器.2001,4:10-14.
    [6]Martynova L,Locascio L E,Gaitan M,et al.Fabrication of plastic microfluid channels by imprinting methods.Anal.Chem.,1997,69(23):4783-4789.
    [7]Holger B,UlfH.Hot embossing as a method for the fabrication of polymer high aspect ratio structures.Sensors and Actuators A,2000,83:130-135.
    [8]Shen X J,Pan L W,Lin L.Microplastic embossing process:experimental and theoretical characterizations.Sensors and Actuators A,2002,97-98:428-433.
    [9]Juang Y J,Lee L J,Koelling K W.Hot embossing in microfabrication,part Ⅰ:experimental.Polymer Engineering And Science,2002,42(3):539-550.
    [10]杜晓光,关艳霞,王福仁等.聚甲基丙烯酸甲脂微流控分析芯片的简易热压制作方法.高等学校化学学报,2003,24(11):1962-1969.
    [11]贺永,傅建中,陈子辰.聚合物微流控芯片热压成型的建模研究.浙江大学学报,2005,39(12):1911-1914.
    [12]王晓东,罗怡,刘冲等.塑料(PMMA)微流控芯片微通道热压成形工艺参数的确定[J].中国机械工程,2005,16(22):2061-2063.
    [13]文伟力.微流控芯片的制作检测及仿真研究.吉林大学博士学位论文,吉林,2007.
    [14]Lee L J,Marc J M,Kurt W K,et al.Design and fabrication of CD-like microfluidic platform for diagnostic:polymer-based microfabrication.Biomedical Micro devices,2001,3(4):339-351.
    [15]Joseph L C,Marcus T E,Andr(?)s J G.Combined microscale mechanical topography and chemical patterns on polymer cell culture substrates.Biomaterials,2006,27:2487-2494.
    [16]Bogdanski N,Schulz H,Wissen M.3D-Hot embossing of undercut structures -an approach to micro-zippers.Microelectronic Engineering,2004,73-74:190-195.
    [17]Lei K F,Li W J,Yan Y.Effects of contact-stress on hot-embossed PMMA microchannel wall profile.Microsystem Technologies,2005,11(4):353-357.
    [18]Chien R D.Micromolding of biochip devices designed with microchannels.Sensors and actuators,2006,128(2):238-247
    [19]Liou A C,Chen R H.Injection molding of polymer micro- and sub-micron structures with high-aspect ratios.The International Journal of Advanced Manufacturing Technology 2006,28(11):1097-1103;
    [20]Ong Nan Shing,Koh Y H,Experimental investigation into micro injection molding of plasticpart.Material and Manufacturing Process,2005,20(2):245-253.
    [21]Randy M.McCormick,Robert J.microchannel electrophoretic separations of dna in injection-molded plastic substrates.Anal Chem.1997,69(11):2035-2042.
    [22]王岩.基于微流控芯片的微注射成型技术.大连理工大学硕士论文,大连,2007.
    [23]Loke Y W,Tor S B,Chun J H,Micro injection-molding of cyclic Olefin Copolymer Using Metallic galssinsert.manufacture system technology,2007(1):35-38.
    [24]Mair D A,Geiger E,Pisano A P,et al.injection molded microfluidic chips featuring integrated interconnects.lab chip,2006(6):13461354.
    [25]LEE LJ MADOU M J KOELLING KW,et al.Design and fabrication of CD-Like microfludic platform for diagnostics:polymer-based microfabrication.biomed microdevices,2001,3(4):339- 351.
    [26]Brennert T,Gottschich N,Knebel G,et al.Injection molding of microfluidic chips by expoxy-based master tools[C]//proceeding of the 9~(th) international conference on miniaturized systems for chemistry and life sciences.Boston:transducers research foundation,2005:193-195.
    [27]Tatsuhiro F,Takatoki Y,Takeshi N et al.Microfabricated flow-through device for DNA amplification-towards in situ gene analysis.Chem Eng,2004,101(1-3):151-156.
    [28]Roberts M,Rossier J,S,Bercier p,et al.UV laser machined polymer sub-strate for the development of microdiagnostic system.Anal Chem,1997,69(11):2035-2042.
    [29]伊福延,吴坚武,冼鼎昌.微精细加工技术-LIGA技术.微细加工技术,1993,4(11):1-7.
    [30]Xia Y N,Whitesides G M.Soft Lithography.Angew Chem int,1998,28:84-153.
    [31]Thomas I W,Alfredo M M,Blake A S et al.low-distortion,high-strength bonding of thermal plastic microfluidic devices employing case diffusion-mediated permeant activation.2007,7:1825-1831
    [32]steven A S,Alyssa C H,Bikas Vet al.surface modification of polymer-based microfluidic devices,analytica chemical acta,2002,470(11):87-99;
    [33]Yi Sun,Yien Chian Kwork,Nam-Trung Nguyen.low-pressure,high-temperature thermal bonding of polymeric microfluidic devices and their applications for eletrophoretic separation.Micromechanics and microengineering,2006,16:1681-1688.
    [34]Lena Klintberg,Malin Svedberg,Fredrik Nikolajeff.Fabrication of a paraffin actuator using hot embossing of polycarbonate.Sensors and Actuators A:Physical.2006,3(103):307-316.
    [35]Zhifeng C,Yunhua G,Jinming L,et al.Vacuum-assisted thermal bonding of plastic capillary electrophoresis microchip imprinted with stainless steel template.Journal of Chromatography A,2004,1038:239-245.
    [36]温敏.塑料微流控芯片微通道热压成型及键合研究.大连理工大学硕士论文,大连,2005.
    [37]温敏,王晓东,刘冲等.PMMA微流控芯片微通道热压成形与键合工艺研究.光学精密工程.2004,3(12):272-276.
    [38]姚李英,张瑜,陈涛等.激光制备PMMA基pcr微流控芯片的热压键合研究.激光应用与系统.2006,1(26):75-77.
    [39]Zhu X,Liu G,Guo Y,et al.Study of PMMA thermal bonding.MicrosystTechnol,2007,13:403-407.
    [40]张瑜.PMMA基PCR生物芯片的准分子激光微加工、键合、封装技术研究 [D],北京工业大学硕士论文,北京,2004.
    [41]Chow W W,Lei K F,guangyi shi et al.microfluidic channel fabrication by PDMS-Interface Bonding.smart materials and sructures.2006,15:S112-S116;
    [42]Eddings M A,Johnson M A and Gale B K 2008 Determining the optimal PDMS-PDMS bonding technique for microfluidic devices J.micromechanics and microenginnering.2008,18 067001.
    [43]Vlachoupoulou M E,Tserep A,Pavli P et al.a low temperature surface modification assisted method for bonding plastic substrates,micromechanics and microenginnering.2009,19 015007.
    [44]楼夏,金星,金玉丰等,基于粘附剂键合的圆片级MEMS塑料封装技术.功能材料与器件学报,2008,14(2):293-297.
    [45]张宗波,罗怡,王晓东等.塑料超声波焊接及其用于聚合物MEMS器件键合的研究进展.焊接,2008,8:9-15.
    [46]Yussuf A A,Sbarsk I,A,Hayes J P,et al.Microwave welding of polymeric -microfluidic devices.Journal of Micromechanics and microengineering 2005,15(3):1692-1699.
    [47]王珉玟.浅谈超高速射出成型技术.机械工业(中国台湾),2000,107(6):106-113:
    [48]蒋炳炎,谢磊,杜雪.微注射成型机发展现状与展望.中国塑料,2004,18(9):6-11:
    [49]蒋炳炎,蓝才红,楚纯朋等,微量注射机的现状与发展趋势,工程塑料应用,2008,36(9):4-9;
    [50]黄步明,许忠斌.高速超精密注塑机的技术进展及发展动向.工程塑料应用.2002,30(12):47-49;
    [51]沈龙江.微透镜阵列注射成型复制度评价与工艺参数优化.中南大学硕士论文,湖南2006.
    [52]严志云,石虹桥,梁世强等.聚合物复合材料界面粘合理论研究进展.仲凯农业技术学院学报,2007,20(2):62-65.
    [53]吴人洁.高聚物的表面与界面.北京:科学出版社,1998,1-63.
    [54]王彦红,张树海.造型粉末制备的黏结理论.山西化工.2008,28(2):30-32.
    [55]杜立群,朱神渺.微机电系统中SU-8厚光刻胶的内应力研究.光学精密工程,2007.15(9):14-19
    [56]Kelle C A.How accurate are Stoney's equation and recent modifications. Journal of Applied Physics,Journal of Applied Physics,2000,88(9):5487-5489.
    [57]Andreas P,Gertrud K.wafer direct bonding:tailoring adhesion between brittle materials.Material science and Engineering,1999,R25:1-88.
    [58]Gui C,Alber H,Gardeniers J G E et al.fusion bonding of rough surface with polishing technique for silicon micromaching.Microsystem Technologies,1997,3(3):122-128.
    [59]Gui C,Elwenspoek M,Tas Net al.The effect of surface roughness on direct wafer bonding.Applied Physics,1999,85(10):7448-7454.
    [60]索涛,李玉龙,刘元镛.温度、应变率队航空PMMA压缩力学性能的影响研究.材料科学与工程.2006,24(4):547-550.
    [61]辛益军.方差分析与实验设计.北京:中国财政经济出版社,2002.257-267
    [62]陈魁.试验设计与分析.北京:清华大学出版社,2005,141-157
    [63]王国富,王志忠.应用统计.长沙:中南大学出版社,2003,88-107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700