用户名: 密码: 验证码:
交流电渗粒子收集理论及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,为预防传染性疾病和生物恐怖袭击,在水、食物和临床样品中的低浓度病原体检测技术研究等方面,引起了人们重视。目前有多种技术用于粒子的控制与收集,其中应用最广泛的是基于电场机制的方法。
     生物学上所关心的对象都是微米或纳米级的粒子,而基于电场机制的粒子收集与分离方法尤其适合于这样的微小级粒子,随着微机电系统(MEMS, Micro-Electro-Mechanical Systems)微加工技术的不断发展,使微纳米级的微电极与微流体器件集成成为可能。交流电渗(AC EO, Alternating Current Electro-Osmotic)技术是一门新兴技术,它在粒子收集与分离方面具有很多优势,如输入信号电压低、不易产生气泡、所需样品少、能实现实时检测、不依赖粒子大小和电场梯度变化,容易与微芯片集成等,因此成为当前研究的一个热门课题。
     本文详细综述了交流电渗粒子收集的国内外研究状况,分析了交变电场下粒子的受力情况,阐述了交流电渗的产生机理,研究了其粒子收集的原理,并用格林函数法求得溶液中的电势数值解,计算出粒子收集的位置,给出了粒子收集位置计算式。
     以理论分析为基础,建立交流电渗相关的数学物理模型,利用有限元软件求解有关电场和流场的Laplace方程及Navier-Stokes方程,并进行仿真分析。综合考虑包括介电泳(DEP, Dielectrophresis)、重力和浮力的作用,得到了微通道内粒子的速度分布。同时分析了包括外加频率、电压,溶液的电导率等主要参数对粒子收集效果的影响,为实验研究提供理论基础。
     为验证理论研究的正确性,设计加工了硅衬底平行式对称微电极芯片,以去离子水稀释直径0.5μm的聚苯乙烯微球混合溶液为实验研究对象,施加交变电场,在荧光粒子显微镜下观察到粒子收集现象。通过改变施加信号、溶液参数等成功地观察到了不同参数下的粒子收集实验结果,验证了主要特征参数对粒子收集的影响。
     全文通过对交流电渗粒子收集基本理论的阐述,理论分析计算、建模仿真分析及实验研究,验证该文的相关理论,为进一步展开交流电渗粒子收集与分离研究奠定了理论与实验基础。
Recently, considerable interest and effort have been devoted to the on-site detection of low concentration pathogens in water, food and clinical samples in order to deter infectious diseases and bioterrorism. There are many techniques used for manipulating or sorting particles, with a widely used method is electric-based method.
     Owning to the subjects with lengths of the order micrometer or nanometer, the force arose from electric-based machine is especially for collecting or separating them. With the development of the technology micro-machining in MEMS, it is possible that the microelectrode with the lengths of the order micrometer or nanometer be fabricated into micro-devices. AC EO is a new technology, which shows many advantages in collecting or separating micro-particles, such as low signal voltage, generating bubble not easily, small sample, real-time detection, independent of the size of particles also the grad of electrical field and integrating in microchip easily, so it becomes a hot research subject.
     This paper introduces the research of particles sorting by AC EO at home and abroad in detail, and the force on the particles is analyzed. The forming principle of AC EO is expounded and the theory of AC EO sorting particles is researched. The numerical value of potential in solution is solved by Green’s function method, while the position particles sorting by AC EO is worked out and the formulation is given.
     The mathematical physics model of AC EO is built on the base of theory. The Laplace equation about electrical and the Navier-Stokes equation about flow field are solved by finite element software. The velocity of particles in micro-channel is solved with considering the DEP and gravity force. The main factors which influence the particles sorting by AC EO, such as frequency, voltage, conductivity of the solution is studied, which provides theoretical basis for experimental research.
     The parallel symmetry microelectrode chip is designed and manufactured in order to validate correctness of the theories research. The experimental research object is polystyrene of 0.5μmdiameter. The polystyrene sorting by AC EO is seen with florescent microscope when applied AC signal. The experiment of particles sorting with different characteristic parameters is seen successfully by change the application signal, conductivity of the solution, which verifies the tendency influence of the main characteristic parameters to the particles sorting.
     The full text verifies the relevant theories in this thesis by expounding the basic theory of AC EO particles sorting, theoretical analysis calculation, modeling and simulation analysis and experiment research, which establish the theoretical and experimental basis for further particles sorting and separating by AC EO research.
引文
1付立新.食品辐照加工技术的现状与展望.黑龙江农业科学. 2005,(2):49~51
    2 W.E. Keene, J.M. McAnulty, F.C. Hoesly, L.P. Williams, K. Hedberg, G.L. Oxman, T.J. Barrett, M.A. Pfaller and D.W. Fleming. A Swimming-Associated Outbreak of Hemorrhagic Colitis Caused by Escherichia Coli O157:H7 and Shigella Sonnei. New England Journal of Medicine. 1994,331(9): 579~584
    3 J.C. Buzby, T. Roberts, C.T.J Lin, and J.M. MacDonald. Bacterial Foodborne Disease:Medical Costs and Productivity Losses. Agricultural Economics Report No. 741: 100, USDA Economic Research Service, Washington,D.C., 1996, http: www.ers.usda.gov/publications/aer741
    4 J.A.F. Compton. Military Chemical and Biological Agents: Chemical and Toxicological Properties. Telford Press, Caldwell, NJ, 1987:458
    5 J. Shah, E. Wilkins. Electrochemical Biosensors for Detection of Biological Warfare Agents. Electroanalysis. 2003,15(3): 157~167
    6 H.-C. Chang. Electro-Kinetics:A Viable Micro-Fluidic Platform for Miniature Diagnostic Kits. The Canadian Journal of Chemical Engineering. 2006,84(2): 146~160
    7 J. Wu, Y. Ben and H.-C. Chang. Particle Detection by Micro Electrical Impedance Spectroscopy with Asymmetric-Polarization AC Electroosmotic Trapping. J. Microfluid Nanofluid. 2005,1(2): 161~167
    8 H. Morgan, N.G. Green. AC Electrokinetics:Colloids and Nanoparticles. Research of Studies Press Ltd. Baldock, Hertfordshire, England, 2003:1~14
    9 P.K. Wong, C.-Y. Chen, T.-H. Wang and C.-M. Ho. An AC Electroosmotic Processor for Biomolecules. The 12th International Conference on Solid-State Sensors, Actuators, and Microsystems, Transducers'03, Boston, USA, 2003,1:20~23
    10 P. K. Wong, T.-H. Wang, J. H. Deval, and C.- M. Ho. Electrokinetics in Micro-Devices for Biotechnology Applications. IEEE/ASME Transactions on Mechatronics. 2004,9(2):366~376
    11 H.A. Pohl. Dielectrophoresis. Cambridge University Press, 1978:20~23
    12 H. Zhou, L.R. White and R.D. Tilton. Lateral Separation of Colloids or Cells byDielectrophoresis Augmented by AC Electroosmosis. Journal of Colloid and Interface Science. 2005,285(1):179~191
    13 Y.C. Chan, M.Carles, N.J. Sucher, M. Wong and Y. Zohar. Design and Fabrication of an Integrated Microsystem for Microcapillary Electrophoresis. Journal of Micromechanics and Microengineering. 2003,13(8):914~921
    14林建宏.微粒子操控技术之开发及特性研究.国立台湾大学应用力学研究所硕士论文. 2004:11~15
    15 M.Z. Bazant, T.M. Squires. Induced-Charge Electrokinetic Phenomena: Theory and Microfluidic Applications. Physical Review Letters. 2004,92(6):066101
    16 C.-M. Ho. Fluidics-The Link Between Micro and Nano Science and Technologies, IEEE Proc. Int. Conf. MEMS’01 (2001), Interlaken, Switzerland, 2001:375~384
    17 P. Scherp, K.H. Hasenstein. Microinjection-A Tool to Study Gravitropism. Advances in Space Research. 2003,31(10):2221~2227
    18 http://www.sutter.com/contact/faqs/Introduction%20to%20Microinjection.pdf
    19郑正荣,杨春康,戴起宝.趋化因子受体对肿瘤生物学行为的影响.世界华人消化杂志. 2006, 14(5): 513~518
    20郭延德.光钳及其在生物学中的应用.激光生物学. 1992,1(1):38-40
    21车津晶,万谦宏.基于磁泳的生物分离分析技术.化学进展. 2006 ,18(2/3):344~348
    22粘正勋,邱闻锋.介电泳动─承先启后的纳米操纵术.物理双月刊. 2004,6(23): 491~497
    23 S. C. Beale. Capillary Electrophoresis, Anal. Chem. 1998,70(12):279~300
    24 B. M. Paegel, C. A. Emrich, G. J. Wedemayer, J. R. Scherer, and R.A. Mathies. High Throughput DNA Sequencing with a Microfabricated 96-Lane Capillary Array Electrophoresis Bioprocessor. Proc. National Academy Sciences USA, 2002,99(2):574~579
    25 B.H. Lapizco-Encinas, B.A. Simmons, E.B. Cummings, and Y. Fintschenko. Dielectrophoretic Concentration and Separation of Live and Dead Bacteria in an Array of Insulators. Anal. Chem. 2004,76(6):1571~1579
    26 J.P.H Burt, K.L.Chan, D. Dawson, A. Parton, and R. Pethig. Assays for Microbial Contamination and DNA Analysis Based on Electrorotation. Ann. Biol. Clin. 1996,54(6): 253~257
    27 N.G. Green, A. Ramos, A. Gonzalez, H. Morgan and A. Castellanos. Fluid Flow Induced by Nonuniform AC Electric Fields in Electrolytes on Microelectrodes, PartⅠ: Experimental Measurements. Phys. Rev. E. 2000,61(4): 4011~4018
    28 Y. J. Kang, C.Yang and X.Y. Huang. Electrokinetic Flow in a Narrow Cylindrical Capillary. Journal of Colloid and Interface Science. 2002,5(13):285~294
    29 N. Islam, J. Wu. AC Electro-Osmotic Micropump Using Asymmetric Polarization. ASME Nanomechanics-Sensors & Actuators, Knoxville, TN, 2005
    30 V. Studer, A. Pépin, Y. Chen and A. Ajdari. An Integrated AC Electrokinetic Pump in a Microfuldic Loop for Fast and Tunable Flow Control. Analyst. 2004,129 (10):944~949
    31 A. González, A. Ramos, N.G. Green, A. Castellanos and H. Morgan. Fluid Flow Induced by Non-uniform AC ElectricFields in Electrolytes on Microelectrodes II: A Linear Double-Layer Analysis. Phys. Rev. E. 2000,61(4): 4019~4028
    32 N.G. Green, A. Ramos, A. González, H. Morgan and A. Castellanos. Fluid Flow Induced By Non-uniform AC Electric Fields in Electrolytes on Microelectrodes III: Observation of Streamlines and Numerical Simulation. Phys. Rev. E. 2002,66(2):026305
    33 L.H. Olesen, H. Bruus and A. Ajdari. AC Electrokinetic Micropumps: The Effect of Geometrical Confinement, Faradaic Current Injection, and Nonlinear Surface Capacitance. Phys. Rev. E. 2006,73(5): 056313
    34 M. Lian, N. Islam and J. Wu. Particle Line Assembly/Patterning by Microfluidic AC Electroosmosis. Int’l MEMS Conf, Singapore. Journal of Physics: Conference Series. 2006,34(1):589~594
    35 N.G. Green, A. Ramos and H. Morgan. AC Electrokinetics: A Survey of Sub-Micrometre Particle Dynamics. Printed in the UK. J. Phys. D: Appl. Phys. 2000,33(6): 632~641
    36 J. Wu. Parallel Plate Particle Trapping with Application to Cantilevers. Institute of Physics Publishing. International MEMS Conference. Journal of Physics: Conference Series. 2006,34(1):709~714
    37 J. Wu, N. Islam and M. Lian. High Sensitivity Particle Detection by Biased AC Electroosmotic Trapping on Cantilever. 19th IEEE Int’l Conf. Micro Electro Mechanical Systems (MEMS 2006), Istanbul, Turkey. 2006:566~569
    38 N. Islam, J. Wu. Microfluidic Transport by AC Electroosmosis. InternationalMEMS Conference 2006 Institute of Physics Publishing, Journal of Physics: Conference Series. 2006,34(1):356~361
    39 J. Wu, Y. Ben, D. Battigelli and H-C. Chang. Long-Range AC Electroosmotic Trapping and Detection of Bioparticles. Ind. Eng. Chem. Res. 2005,44(8), 2815~2822
    40 Y. Zhang. Bulk Titanium Microfluidic Devices. University of Califrnia Santa Barbara. A Dissertation Submitted in Partial Satisfaction of the Requirements for the Degree Doctor of Philosophy in Mechanical Engineering. 2006,3:69~81
    41 H. Morgan. N.G. Green. AC Electrokinetics: Colloids and Nanoparticles. Research of Studies Press Ltd. Baldock, Hertfordshire, England, 2003:49~54
    42 M.P. Hughes. Nanoelectromechianice in Engineering and Biology. CRC press. Boca Raton London New York Washington, D.C., 2003:35~42
    43林育德.平面式微介电泳系统之研发与其在生物微粒分离上之应用.国立成功大学医学工程研究所硕士论文. 3~28
    44 A. Castellanos, A. Ramos, A. González, N.G. Green and H. Morgan. Electrohydrodynamics and Dielectrophoresis in Microsystems:Scalling Laws. Journal of phsics D: Appled Phsics. 2003,36(20):2584~2597
    45 H. Morgan, N. G. Green. AC Electrokinetics: Colloids and Nanoparticles. Research of Studies Press Ltd. Baldock, Hertfordshire,England, 2003:81~111
    46 Michael Pycraft Hughes. Nanoelectromechanics in Engineering and Biology. Boca Raton :CRC Press, 2003:51~59
    47江涛.基于MEMS的直流电渗泵的研究.哈尔滨工业大学硕士论文. 2006:8
    48 Z. Gagnon, H.-C. Chang. Aliging Fast Alternating Current Electroosmotic Flow Fields and Characteristic Frequencies with Dielectrophoretic Traps to Achieve Rapid Bacteria Detection. Electrophoresis. 2005,26(19):3725~3737
    49 H. Morgan, N.G. Green. AC Electrokinetics: Colloids and Nanoparticles. Research of Studies Press Ltd. Baldock, Hertfordshire,England, 2003:140~150
    50张立翔,杨苛.流体结构互动理论及其应用.科学出版社, 2004:14~16
    51于建群,石晶,陈玉香.塑料电泳芯片设计.中国基础科学, 2004,(3):26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700