用户名: 密码: 验证码:
自然和人工藓类结皮层对土壤及植物营养元素含量的影响初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然生物结皮和人工培养生物结皮能显著增加地表0—5cm土层的营养物质含量,对土壤营养物质含量的影响范围仅限于表层0—5cm,对更深层次土壤营养物质含量则无显著影响,在表层0—5cm内,水解性N、有效P、速效K、有效S和有效Mo的含量都表现出自然结皮>人工结皮>无结皮,而有效Mn的含量人工结皮含量最高。土壤中有效N与有效P、速效K和有效Mn显著正相关(P<0.01);有效P与有效Mn显著正相关(P<0.01),有效P与速效K显著相关(P<0.05);速效K与有效Mn显著正相关(P<0.01),速效K与有效S正相关(P<0.05)。
     生物土壤结皮对植物营养元素的吸收包括积极和消极的影响。七种植物中都共同表现为生长在结皮层土壤上的植物N营养元素含量高于生长在无结皮层土壤上的植物N营养元素含量,结皮层草本植物P营养元素含量不低于无结皮层的,结皮层半灌木P营养元素含量低于无结皮层的。在植物体内,N和P营养元素含量显著正相关(P<0.01),P和K营养元素含量相关(P<0.05);Mg、Mn和S营养元素含量相关(P<0.05)。这种现象的出现可能与植物的生理活动不同有关,或者是由于生物结皮与植物根系之间的竞争关系造成的。
     采用称重法在7—9月份对不同类型结皮进行凝结水观测试验,从单日3h吸湿凝结量的变化和吸湿凝结水的垂直变化看,凝结量从大到小依次为:苔藓结皮>藻类结皮>无结皮层,说明苔藓植物具有很好的吸水能力。在测定期内苔藓结皮平均吸湿凝结量约为0.68g,说明吸湿凝结水是沙漠苔藓生命活动重要的水分来源。
     室内培养藓类发现真藓的成活率是最高的,在土壤浸出液和Knop营养液中成活率接近于90%。在培养过程中发现真藓的繁殖具有多样性,可由原植物体顶端直接生长产生新的植物体,也可由植物体直接产生原丝体,再由原丝体产生新的植物。野外对真藓、土生对齿藓和刺叶赤藓的人工培养发现成活率最高的是真藓,土生对齿藓仅有少量存活,但不能形成明显的结皮层,刺叶赤藓未发现有成活的植物体。对照样地的试验表明,在土壤基质稳定的基础上,土壤中的藻类可快速繁殖形成结皮层,在样地中培养的当年藻类结皮层盖度最高可达到40%,最低为25%,平均为31.67%,到2008年可达到90%以上。2006年样地总面为11.54 m~2,2008年样地总面积为13.48 m~2,2年期间样地面积共增加了1.94 m~2。藓类结皮层盖度也具有明显的增加,6号样地2006年仅为6%,2007年为40%,2008年达到100%。结皮层厚度2006年为1-2mm,2008年达到3-5mm。人工培养藓类促进结皮层形成试验还有待于进一步深入研究。
The natural biological crust and the artifical cultured biological crust can significantly enrich accumulation of nutrition element by 0-5cm in the soil layer. This effect canonly reach 0-5cm in the soil layer, and there is no significant effect of nutrition element in deeper soil layer. At the range of 0-5cm, the content of the available N, the available P, the available K, the available S and the available Mo shows: the content of nutrition element in natural crust is higher than the content in artificial crust and uncrusted soil. However the content of the available Mn is the highest in the artificial crust. The available N and the available P, the available K and the available Mn are highly positively correlated (P<0.01); the available P and the available Mn are highly positively correlated (P <0.01), the available P and the available K are correlated (P<0.05); the available K and the available Mn are highly positively correlated (P<0.01),the available K and the available S are positively related(P<0.05).
     Biological soil crusts have positive and negative effects on plant absorption of nutrients. Content of Nutrient N of seven plants growing on soil encrusted with mosses is higher than those growing on uncrusted soil. Content of Nutrient P of herbaceous plants growing on soils encrusted with mosses is not lower than those growing on uncrusted soil. Nutrient P content of semi-shrubs growing on soils encrusted with mosses is lower than those growing on uncrusted soil. This phenomenon may caused by different plant physiological activities, or the competition between biological crusts and plant roots. Within a plant life, N and P nutrients are highly positively correlated (P <0.01), P and K are positively correlated (P <0.05); Mg, Mn and S are related (P <0.05).
     The weighting method is adopted from condensation of water observation. The condensation water for different kinds of samples is observed from July to September. Based on the observation of the changes in amount of water condensation and the vertical changes of the condensation water, which took place every 3hours a day, the results are: the amount of water condensation in moss crust is higher than the amount in algae crust and uncrusted soil. Bryophytes have strong water-retention ability. During measurement period, the average condensation water of crust is about 0.68g, this figure accounts for 50% of water supplies of bryophytes living activities. The study indicates condensation water is an important water source of mosses.
     The survival rate of Bryum argenteum through indoor cultivation is the highest. The survival rate of Bryum argenteum in the soil extract and Knop nutrient solution is close to 90%. During this process, we found the propagation of Bryum argenteum equpied with diversity. A new plant can grow from the top of original plant and generated from protonema from original plant. Through the outdoor artifical cultivation of Bryum argenteum, Didymodon vinealis and Syntrichia caninervis we found the highest survival rate is Bryum argenteum. A small amount of Didymodon vinealis is alive. However there is no formation of crust. Syntrichia caninervis could not survive. The controlled trials show that the algae in the soil can form crust on thebasis of stability of the soil matrix. The algal crust coverage can reach up to 40% maxium and 25% minium in one year, which averaged 31.67%. In 2008, this coverage reached up to 90%. The total trail area in 2006 is 11.54 m~2. This area incresed to 13.48m~2 in 2008. Mosses crust coverage increased at the same time. In 2006 the coverage is only 6%, in 2007 incresed to 40%, in2008 was up to 100%. The thickness of artificial mosses crust is 1-2mm in 2006, it reached to an average of 3-5mm in 2008. The experiment of promoting formation of crust by artifical cultured mosses is needed to be further studied.
引文
[1]West N E.Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi - arid regions[J].Advances in Ecological Research,t990,20:179 - 223.
    [2]Belnap J,Harper K T,Warren S D.Surface disturbance of cryptobiotic soil crusts:nitrogenase activity,chlorophyll content and chlorophyll degradation[J].Arid Soil Res.Rehabil.,1994,8:1-8.
    [3]Kidron,G.J.Microclimate control upon sand microbiotic crusts,Western Negev Desert,Israe[J].Geomorp,2000,36(1-2):1-15.
    [4]Harper K T,Pendleton R L.Cyanobacteria and cyanolichens:can they enhance availability of essential minerals for higher plants[J].Great Basin Naturalist,1993,53:59-72.
    [5]Harper K T.The influence of biological soil crusts on mineral uptake by associated vascular plants[J].Journal of Arid Environment,2001,47:347-357.
    [6]Clair L L,Webb B L,Johansen J R.et al.Cryptogamic soil crust:enhancement of seedling establishment in disturbed and undisturbed areas[J].Reclamation and Revegetation Research,1984,3:129-136.
    [7]Williams J D.Influence of microphytic crusts on selected soil physical and hydrologic poperties in the Hartnet Draw,Capital Reef National Park,Utah.Ph.D.Dissertation.Logan,UT:Utah State University,1993.
    [8]A Berkeleyl,A D Thomasl,and A J Dougilll.Cyanobacterial soil crusts and woody shrub canopies in Kalahari rangelands[J].African Journal of Ecology,2005,43:137 - 145.
    [9]Tirkey J and S P Adhikary.Cyanobacteria in biological soil crusts of India.Current Science[J].2005,89(3):515- 521.
    [10]Belnap J,D J Eldridge.Disturbance and recovery of biological soil crusts.In:Belnap,J.,Lange,O.L1.(Eds.),Biological Soil Crusts:Structure,Function and Management[M].Ecological Studies,2003:363 - 384.
    [11]A D Thomasa,A J Dougill.Distribution and characteristics of cyanobacterial soil crusts in the Molopo Basin,South Africa[J].Journal of Arid Environments,2006,64:270 - 283.
    [12]胡春香,刘永定.宁夏回族自治区沙坡头地区沙漠土壤中藻类的垂直分布[J].生念学报,2003,23(1):38-44.
    [13]段争虎,刘新民,屈建军.沙坡头地区土壤结皮形成机理的研究[J].干旱区研究,1996,13(2):31-36.
    [14]王雪芹,张元明,张伟民,等.古尔班通古特沙漠生物结皮对地表风蚀作用影响的风洞实验[J].冰川冻土,2004,26(5):632-638.
    [15]张丙昌,张元明,赵建成,等.准噶尔盆地古尔班通古特沙漠生物结皮蓝藻研究[J].地理与地理信息科学,2005,21(5):107-109.
    [16]徐杰,白学良,田桂泉,等.腾格里沙漠固定沙丘结皮层藓类植物的生态功能及与土壤环境因子的关系[J].中国沙漠,2005,25(2):234-242.
    [17]田桂泉,白学良,徐杰,等.腾格里沙漠固定沙丘藓类植物结皮层的自然恢复及人工培养试验研究[J].植物生态学报,2005,29(1):164-169.
    [18]Vitt D H.Patterns of grownth of the drought tolerant moss,Racomitrium microcarpon,over a three year period[J].Lindbergia,1989,15:181 - 187.
    [19]李博.鄂尔多斯高原的白然条件与草地资源概况[M].李博文集编辑委员会,李博文集.北京:科学出版社,1999,373-379.
    [20]刘丽燕,吾尔妮莎·沙衣丁,阿不都拉·阿巴斯.荒漠化地区生物结皮的研究进展[J].菌物研究2005,3(4):26-29.
    [21]闫德仁,薛英英,韩凤杰等.沙漠生物土壤结皮国外研究概况[J].内蒙古林业科技.2007,33(1):14-24.
    [22]赵建成,张丙昌,张元明.新疆古尔班通古特沙漠生物结皮绿藻研究[J].干旱区研究,2006,23(2):189-194.
    [23]艾尼瓦尔·吐米尔,王玉良,阿不都拉·阿巴斯.新疆准噶尔盆地南缘土壤生物结皮中地衣物种组成和分布[J].植物资源与环境学报,2006,15(3):35-38.
    [24]张丙昌,张元明,赵建成.古尔班通古特沙漠生物结皮藻类的组成和生态分布研究[J].西北植物学报,2005,25(10):2048-2055.
    [25]吴楠,潘伯荣,张元明,等.古尔班通古特沙漠生物结皮中土壤微生物垂直分布特征[J]应用与环境生物学报,2005,11(3):349-353.
    [26]田桂泉,白学良,徐杰,等.固定沙丘生物结皮层藓类植物形态结构及其适应性研究[J].中国沙漠,2005,25(2):249-255.
    [27]吴玉环,高谦,程国栎.生物土壤结皮的生态功能[J].生态学杂志,2002,21(4):41-45.
    [28]周志刚,程子俊,刘志礼.沙漠结皮中藻类生态的研究[J].生态学报,1995,15(4):385-391.
    [29]吴楠,潘伯荣,张元明.土壤微生物在生物结皮形成中的作用及生念学意义[J].干旱区研究,2004,21(4):444-450.
    [30]潘伯荣,曹同,张元明.干旱与半干旱地区苔藓植物生念学研究综述[J].生态学报,2002,22(7):1074-1079.
    [31]EldridgeD J,Greene R S B.Microbiotic soil crusts:a rewiew of their roles in soil and ecological processes in the rangelands of Australia[J].Australia Journal of SoilReaearch,1994,32:389-415.
    [32]Jayne Belnap.Nitrogen fixation in biological soil crusts from southeast Utah,USA[J].Biol Fertil Soils(2002) 35:128-135.
    [33]Jayne Belnap,Harper K T.Influence of cryptobiotic soil crusts on elemental content of tissue of two desert seed plants[J].Arid Soil Research and Rehabitation,1995,9:107-115.
    [34]Jayne Belnap,Harper K T.The influence of biological crusts on mineral uptake by associated vascular plants[J].Joural of Arid Environments,2001,47:347-357.
    [35]李卫红,任天瑞,周智彬,等.新疆古尔班通古特沙漠生物结皮的土壤理化性质分析[J].冰川冻土,2005(4):219-226.
    [36]崔燕,吕贻忠,李保国.鄂尔多斯沙地土壤生物结皮的理化性质[J].土壤,2004,36(2):197-202.
    [37]张元明,杨维康,王雪芹,等.生物结皮影响下的土壤有机质分异特征[J].生态学报,2005,25(12):3420-3425.
    [38]Brown D H.,Brown R M.Mineral cycling and lichens:the physiological basis[J]Lichenologist,1991,23(3):293 - 307.
    [39]West N E.Structure and function of microphytic soil crusts in wildlife ecosystems of arid to semi-arid regions[J].Advance in Ecological Research,1990,20:179-223.
    [40]Malmer N.constant or increasing nitrogen concentrations in Sphagnum mosses on mires in Southern Sweden during the last decades[J].Aquilo Serie Bot.,1990,28:57-65.
    [41]Aerts R,Malmer N.Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply[J].J.Ecol.1992,80:134-140.
    [42]Evans R D,Ehleringer J.R.A break in nitrogen cycle in arid lands? Evidence from N15 of soil.Oecologia,1993,94:314-317.
    [43]Evans R D,Belnap J.long-term consequences of disturbance on nitrogen dynamics in arid ecosystem[J].Ecology,1999,80:150-160.
    [44]Belnap J.factors influencing nitrogen fixation and nitrogen release in biological soil crusts.in:belnap J,Lange OL(eds) Biological SoilCrusts:Structure,Function,and Management,vol150.Springer-Verlag,Berlin,2001pp241-261.
    [45]Shields L M,Durrell L W.Algae in relation to soil fertility[J].Botanical Review,1964,30:92-128.
    [46]Rogers S L,Burns R G.Changes in aggregate stability,nutrient status,indigenous microbial populations,and seedling emergence,following inoculation of soil with Nostoc muscorum[J].Biology and Fertility of Soils,1994,18;209-215.
    [47]Defalco L A.Influence of cryptobiotic crusts on winter annuals and forging movements of the desert tortoise.in:Department of Biology.Colorado State University,Fort Collins,CO,1995,p48.
    [48]Belnap J,Prasse R,Harper K T.Influence of biological soil environments and vascular plants,in:belnap.J,LangeOL(eds) BiologicalSoilCrusts:Structure,Function,and Management,vol150.Sprin -ger-Verlag,Berlin,2001,281-230.
    [49]Lange W.Speculation on a possible essential function of the gelatinous sheath of blue-green algae[J].Canadian Journal of Microbiology,1976,22:1181-1185.
    [50]Geesy G,Jang L.Extracelluar polymers for metal binding.In:Ehrlich H.L.,Brierley C.L.(eds)microbial mineral recovery.New York:McGrraw-Hill,1990,pp223-247.
    [51]Jauhiainen J,Vasand H.Nutrient concentration in Sphagna at increased N-deposition rates and raised atmospheric CO_2[J].concentration.Plant Ecology,1998,138:149-160.
    [52]Samecka-Cymerman A,Kempers A J.Mental and macroelement concentration and effect of nutrient addition in terrestrial bryophytes growing on serpentine msssifs in Lower Silesia,Poland[J].Environment Geology,2002,43:79-86.
    [53]吴鹏程.苔藓植物生物学[M].北京:科学出版社,1998,23-148.
    [54]Kidron G J.Microclimate control upon sand microbiotic crusts[J].Western Negev Desert,Israe.Geomorp,2000,36(1-2):1 - 15.
    [55]Anderson D C,Harper K T,Rushforth S R.Recovery of cryptogamic soil crusts from grazing on Utah winter ranges[J].Journal of Range Management,1982,35:355-359.
    [56]王世冬,白学良,雍世鹏.沙坡头地区藓类植物区系初步研究[J].中国沙漠,2001,21(3):244-249.
    [57]张元明,曹同,潘泊荣.新疆占尔班通占特沙漠南缘土壤结皮中苔藓植物的研究[J].西北植物学报2002,22(1):18-23.
    [58]Belnap J.Recovery rates of cryptobiotic crusts:inoculant use and assessment methods[J].Great Basin Naturalist,1993,53:89-95.
    [59]Vashistha B D,R N Chopta.In vitro studies on spore germination,protonemal differentiation and bud foemation in three himalayan mosses[J].Journal of the Hattori Botanical Laboratory,1984,62:121-136.
    [60]Sharma P,Chopta R N.In vitro production and behaviour of protonemal gemmae in Hyophila in volute(Hook.)Jaeg.Journ.Hattori Bot.Lab.1986,60:137-141.
    [61]张萍,自学良,徐杰等.干旱区固定沙氏结皮层藓类植物繁殖生物学特性研究[J].中国沙漠,2002,22(6):553-558.
    [62]白学良,王瑶,徐杰等.沙坡头地区固定沙丘结皮层藓类植物的繁殖和生长特性研究[J].中国沙漠2003,23(2):170-173.
    [63]赵建成,李秀片,张慧中.十种藓类植物孢子萌发与原丝体发育的初步研究[J].干旱区研究,2002,19(1):32-38.
    [64]Belnap J,Gardner J S.Soil microstructure in soils of the Colorado Plateau:the role of the cyanobacterium Microcoleus vaginatus[J].Great Basin Nat,1993,53:40-47.
    [65]Adhikary S P.and Sahu J K.Survival strategies of cyanobacte-ria occurring as crust in the rice fields under drought conditions[J].Indian J.Microbiol.,2000,40,53-56.
    [66]Friedmann E I,GalunM.Desert algae,Lichens and fungi[J].In:Brown GW ed.Desert Biology.New York:Academic Press,1974.165-212.
    [67]Campbell S E,Seeler J,Golubic S.1989.Desert crust formation and soil stabilization[J].Arid Soil Res.and Rehab.J.3:217-228.
    [68]朱瑞良,王幼芳,熊李虎.苔藓植物研究进展Ⅰ我国苔藓植物研究现状与展望[J].西北植物学报,2002,22(2):444-451.
    [69]曾信波.苔藓层的蓄水保土功能研究[J].水土保持学报,1995,9(4):118-121.
    [70]林伯群,王振权.针叶林下松针层和苔藓层对土壤发育的影响[J].东北林业大学学报.1990,18(4):1-9.
    [71]徐杰,白学良,杨持,等.固定沙丘结皮层藓类植物多样性及固沙作用研究[J].植物生态学报,2003,27(4):545-551.
    [72]Correns C.Untersuchungen uber die Ver mehrung der Laubmoose durch Brut organe und Stecklinge[M].Jena:Verlag von Gustav Fischer,1899.
    [73]Longton R E,Miles J.Studies on the rep roductive biology ofmosses[J].Journal of the Hattori Botanical Laboratory,1982,52:219- 239.
    [74]Imura S,Iwatsukiz.Classificati on of vegetative diaspores on Japanese mosses[J].Hikobia,1990,10:435- 443.
    [75]Mogie M.The Evolution of Asexual Reproduction in Plants[M].London:Chapman and Hall,1992.
    [76]Laaka- Lindberg S,Kor pelainen H,Pohjamo M.Dispersal of asexual propagules in bryophytes[J].Journal of the Hattori B otanical Laboratory,2003,93:319- 330.
    [77]Imura S.Vegetative diaspores in Japanese mosses[J].Journal of the Hattori Botanical Laboratory,1994,77:177-232.
    [78]方炎明.植物生殖生态学[M].济南:山东大学出版社,1996.
    [79]Newton A E.Flagelliform propagules from alar cells in Pilotrichella flexilis[J].Journal of Bryology,2002,24(3):252- 254.
    [80]黎兴江.中国苔藓志[M].北京:科学出版社,2006.
    [81]Hermstadt I,Kidron G J.Reproductive strategies of Bryum dunense in three microhabitats in the Negev Desert[J].The Bryologist,2005,108(1):101- 109.
    [82]Mallon R,Reinoso J,Rodriguez Oubina J,et al.In vitro devel opment of vegetative propagules in Splachnum am pullaceum:Brood cells and chloronematal bubils[J].The B ryologist,2006,109(2):215-223.
    [83]Egunyomi A.The effectiveness of asexual reproduction in the distribution of Philonotis haststs [J].Journal of the Hattori Botanical Laboratory,1981,50:159- 164.
    [84]Watson E V.The Structure and Life of Bryophytes[M].London:Hutchins on University Library,1971.
    [85]Selkirk P M.Protonemal gemmae on Am blystegium serpens(Hedw.) B.,S.& G.from Macquarie Island[J].Journal of Bryology,1981,11:719- 721.
    [86]Sharma P,Chopra R N.In vitro production and behaviour of protonemal gemmae in Hyophila involuta(HOOK.) JAEG[J].Journal of the Hattori Botanical Laboratory,1986,60:137- 141.
    [87]陈邦杰.中国藓类植物属志(上册)[M].北京:科学出版社,1963.
    [88]Reese W D.Asexual reproduction in Calymperaceae(MUSCI),with special reference to functional morphology[J].Journal of the Hattori Botanical Laboratory,1997,82:227-244.
    [89]Reese W D.The gemmae of the calymperaceae[J].The Bryologist,2001,104(2):282- 289.
    [90]Zhang L,Ma P,Chu L M,et al.Three modes of asexual reproduction in the moss Octoblepharum albidum[J].Journal of Bryology,2003,25:175- 179.
    [91]Lewinsky J.Rhizoidal gemmae in Glyphom itrium daviesii(With.) Brid;Studies in the moss flora of the Faroes 6[J].L indbergia,1987,13:155- 158.
    [92]Risse S.Rhizoid gemmae in mosses[J].Lindbergia,1987,13:111- 126.
    [93]Wasley J.The Effect of Climate Chang on Antarctic Terrestrial Flora(Ph.D.dissertation)[D].Australia:University of Woll ongong,2004.
    [94]李新荣,贾玉奎,龙利群,等.干旱半干旱地区土壤微生物结皮的生态学意义及若干研究进展[J].中国沙漠,2001,21(1):4-11.
    [95]新洲.南极湖底有绿洲[J].海洋世界,2004,(4):16.
    [96]Mcdaniel S F,Miller N G.Winter dispersal of bryophyte fragments in the Adirondack Mountains[J].New York.Bryologist,2000,103:592- 600.
    [97]彭琴,陈晔.苔藓植物的特性及人工培养方法[J].九江学院学报,2007,6:26-27.
    [98]魏江春.沙漠生物地毯工程-干旱沙漠治理的新途径[J].干旱区研究[J].2005,22(3):287-288.
    [99]Black C A.soil-plant relationships,2nd ed[M].John wiley,New York.
    [100]Lange W.Speculations on a possible essential function of the gelatinous sheath of blue-green agle[J].Canadian Journal of Microbiology,1968,22:1181-1185.
    [101]Mayland H F,andT H McIntosh.Availability of biological fixed atmosphere nitrogen-15 to higher plants[J].Nature 1966,209:421-422.
    [102]Mayland H F,T H McIntosh and W H Fuller.Fixation of isotopic nitrogen in a semi-arid soil by agal crust organisms[J].Soil Science of America Proceedings,1966,30:56-60.
    [103]Stewart W D P.Transfer of biologically fixed nitrogen in a sand dune slack region[J].Nature,1967,214:603-604.
    [104]Fuller W H,R E Cameron and N Raica.Fixation of nitrogen in desert soils by algae[J].Transaction of the International Soil Science Society Congress,1960,3:617-624.
    [105]Woodward R A,K T Harper andA R Tiedemann.Anecological consideration of the cation-exchange capacity of roots of some Utah range plant[J].Plant and Soil,1984,79:169-180.
    [106]Danin A.Plant species diversity under desert condition.I[J].Annual species diversity in the Dead Sea Valley. 1976.Oecologia, 22:251-259.
    
    [107] Aderson D C ,Harper K T.Factors influencing development of cryptogamic soil crusts in Utah deserts[J]. Journal of Range Management, 1982,35:180-185.
    
    [108] Verrecchia E ,Yair. Physical properties of the psammophile cryptogamic crust and their consequences to the water regime of sandy soils,north-western Negev Desert[J].Journal of Arid Environments, 1995,29:427-437.
    
    [109] Defalco L A.Influence of cryptobiotic crusts on winter annuals and foraging movements of the desert tortoise[D]. Thesis.Department of Biology,Colorado State University,Fort Collins,CO,USA. 1995,48.
    
    [110]Ingham R E.Trofymow J A.Interactions of bacteria,fungi.and their nematode grazers:effects on nutrient cycling,and plant growth[J].Ecological Monographs, 55:119-140.
    
    [111]Rogers S L,Burns R G. Changes in aggregate stability,nutrient status,indigenous microbial populations,and seedling emergence,following inoculation of soil with Nostoc muscorum[J]. Biology and Fertility of Soils, 1994,18:209-215.
    
    [112]Greene B Jang L.Extracellular polymers for metalbinding[J]. In: Ehrlich, H.L. (Eds.),.Microbial Mineral Recovery, 1990, 249-275.
    
    [113] Lange W.Chelating agents and blue green algae[J].Canadian Journal of Microbiology, 1976,20:1311-1321.
    
    [114]Greene B ,Darball D W. Microbial oxygenic photoautotrophs (cyanobacteria and aglae)for mental iron binding[J].In:Ehrlich,C.L.(Eds.),Microbial Mineral Recovery, 1990,277-302.
    [115] Gadd G M. Biosorption[J].Chemistry and industry, 1990,13:421-426.
    
    [116]Pirszel J,Pawlik B.Cation-exchange capacity of algae and cynobacteria: a parameter of their metal sorption abilities[J].Journal of industrial Microbiology, 1995,14:319-322.
    [117]Gadd G MFungi and yeasts for mental accumulation[J]. In:Ehrlich,H.L. (Eds.) Microbial Mineral Recovery, 1990,249-275.
    
    [118] Paerl H W. Growth and reproductive strategies of freshwater blue-green algae(cyanobacteria)[J].In Sandgren,C.D.(Ed.).Growth and Reproductive Strategies of Freshwater Phytoplankton, 1988,261-315.
    
    [119]Fogg G E.The extracellular products of algae[J].Oceanography and Marine Biology Annual Review, 1966,4:195-212.
    [120]Pendleron R L,Warren S D.Effects of cryptobiotic soil crusts and VA mycorrhizal inoculation on growth of five rangeland plant species[J].In:West,N.E.(Ed.),Procedings,Fifth International Rangeland Congress,1995,436-437.
    [121]钱连红.毛乌素沙地三种下垫面吸湿凝结水初探[D].内蒙古农业大学硕士学位论文,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700