用户名: 密码: 验证码:
冰箱压缩/喷射混合制冷循环系统实验及数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在21世纪的能源危机中,冰箱的节能对于经济发展、环境保护和能源安全具有重要的意义。本文在前人研究的基础上,改进了冰箱压缩/喷射混合制冷循环系统,优化了冰箱喷射器的设计方法,根据系统性能要求制作出节能效果较好的冰箱喷射器样品及冰箱样机。
     对冰箱压缩/喷射混合制冷循环系统进行了理论研究,对不同连接形式的冰箱压缩/喷射混合制冷循环系统进行了实验研究,得出以下结论:(1)两蒸发器并联的冰箱压缩/喷射混合制冷循环系统,两台样机的耗电量分别为0.775kWh/day和0.748 kWh/day,均未能在降低耗电量上体现出优势;(2)两蒸发器串联的冰箱压缩/喷射混合制冷循环系统,两台不同毛细管流量的冰箱样机耗电量分别为0.760 kWh/day和0.768 kWh/day,同样存在耗电量偏高的缺点;(3)两蒸发器并联的冰箱压缩/喷射混合制冷循环交叉回热系统,能有效地减小系统中因节流所带来的冷量损失,样机的耗电量为0.655 kWh/day,实现整机降低耗电量7.75%。
     对冰箱喷射器的性能进行了数值研究,表明:(1)在工作喷嘴的出口处,存在以中心线为对称轴的两个旋涡;(2)在热力参数方面,存在一最佳工作流体压力P_(popt)=0.06612MPa,对应最大的喷射系数u=0.568;存在一最佳引射流体压力P_(Hopt)=0.04837 MPa,对应最大的喷射系数u=0.564;(3)在几何参数方面,存在一个最佳的喉管面积比Ψ_(opt)=6.25,对应于最大的喷射系数u=0.561;存在一个最佳工作喷嘴出口与混合室入口截面的距离X_(copt)=14.78,喷射系数达到最大值u=0.563;混合段的锥度对冰箱喷射器性能影响较小,在θ=5°~10°之间,喷射系数并无明显变化,且保持一个较大的值。
     采用改进型的回(排)气增压节能装置的冰箱可以实现降低耗电量3.36%~8.0%,带排气增压节能装置的冰箱比带回气增压节能装置的冰箱具有更大的节能降耗优势。
In the 21~(sh) Century energy crisis,energy-saving of household refrigerator is very important for economic development,environmental protection and energy security. This dissertation is to study compression/injection hybrid refrigeration cycle system on the basis of previous studies,optimiz the design of refrigerator-ejector.The results manufactured refi-igerator-ejector sample and refrigerator prototype into superior energy-saving effect according to the requirements of the system performance.
     To achieve the objectives,theoretical study and experiment on compression/injection hybrid refrigeration cycle system of refrigerator were carried out respectively,the results conclude that:(1) For the compression/injection parallel hybrid refrigeration cycle system,two refrigerator experimental prototypes' energy consumption are 0.775 kWh/day and 0.748 kWh/day respectively,which fail to reflect on the energy-saving advantages.(2) For the compression/injection series hybrid refrigeration cycle system,two refrigerator experimental prototypes with different capillary flow energy consumption are 0.760 kWh/day and 0.768 kWh/day respectively,similarly there are disadvantages of low energy consumption.(3) For the compression/injection heat-exchange hybrid refrigeration cycle system,the loss of heat in the throttle processing can be effectively decreased,the refrigerator experimental prototype's energy consumption is 0.655 kWh/day,with reducing energy consumption by 7.75%.
     The numerical simulation on the performance of refrigerator-ejector was studied, the results show that:(1) In the outlet of nozzle,there are two vortices on the center line for the axis of symmetry.(2) In thermodynamic parameters,there is one optimal pressure of primary fluid,i.e.P_(popt)=0.06612 MPa,corresponding to the maximum entrainment ratioμ=0.568,and one optimal pressure of secondary fluid,i.e. P_(Hopt)=0.04837 MPa,corresponding to the maximum entrainment ratioμ=0.564.(3) In geometric parameters,being one optimal throat area ratioΨ_(opt)=6.25,corresponding to the maximum entrainment ratioμ=0.561,there is one optimal cross-section distance of nozzle exit between mixing chamber entrance X_(copt)=14.78,corresponding to the maximum entrainment ratioμ=0.563,the angle of mixing section has a negligible effect on the performance of refrigerator-ejector and entrainment ratio has no noticeable change which maintains a relatively high value withθ=5°~10°.
     The modified suction(or discharge) booster energy-saving devices were used, the refrigerator can reduce energy consumption by 3.36%~8.0%,what's more,the refrigerator with the discharge booster energy-saving device has advantage in reducing energy consumption than which one with the suction booster energy-saving device.
引文
[1].Zeuner G.Vorlesungen uber Theorie der Turbinen[J].Leipzig,1939,14(3):52-56.
    [2].Rankin M.Proceedings of the Royal Soc[J].Ingenieur(Utrecht),1940,6(2):35-40.
    [3].Sun D W,Eames I W.Recent developments in the design theories and application of ejectors-a review[J].Journal of the Institute of Energy,1995,68:65-79.
    [4].Keenan J H,Neumann E P.A simple air ejector[J].ASME Journal of Applied Mechanics,1942,64:75-82.
    [5].Elrod H G Jr.The theory of ejectors[J].ASME Journal of Applied Mechanics,1945,67:170-174.
    [6].Keenan J H,Neumann E P,Lustwerk F.An investigation of ejector design by analysis and experiment[J].ASME Journal of Applied Mechanics,1950,72:299-309.
    [7].索科洛夫,津格尔.喷射器[M].黄秋云译.北京:科学出版社,1977:2-3.
    [8].Hoggarth M L.The design and performance of high-pressure injectors as gas jet boosters[J].Proc.Inst.Mech.Eng.,1970,185(56):755-766.
    [9].Otis D R.Choking and mixing of two compressible fluid streams[J].ASME Journal of Fluids Enginering,1976,98:311-317.
    [10].Deleo R V,Rose R E,Dart S.An experimental investigation of the use of supersonic driving jet for ejector pumps[J].Transaction of ASME,1962,86:A204-212.
    [11].Harris L S,Ficher A S.Characteristics of the steam-jet vacuum pump[J].Transaction of ASME,1964,86:B358-364.
    [12].Balatchley C G.Selection of air ejectors[J].Chemical Engineering Progress,1961,57(10):114-120.
    [13].Munday J H,Bagster D F.A new ejector theory applied to steam jet refrigeration[J].I&EC Process Design Development,1977,16(4):442-449.
    [14].Huang B J,Jiang C B,Hu F L.Ejector performance characteristics and design analysis of jet refrigeration system[J].ASME Journal of Engineering for Gas Turbines and Power,1985,107:792-802.
    [15].Huang B J,Chang J M.Empirical correlation for ejector designs[J]. International Journal of Refrigeration,1999,22:379-388.
    [16].Rogdakis E D,Alexis G.Investigation of ejector design at optimum operating condition[J].Energy Conversion and Management,2000,41:1841-1849.
    [17].Chou S K,Yang P R,Yap C.Maximum mass flow ratio due to secondary flow choking in an ejector refrigeration system[J].International Journal of Refrigeration,2001,24:486-499.
    [18].Dotterweich F H,Mooney C V.How to design and operate gas jet compressors [J].Petroleum Refiner,1955,34(10):104-109.
    [19].Gupta S K,Singh R P,Dixit R S.A comparative parametric study of two theoretical model of a single-stage,single-fluid,steam jet ejector[J].The Chmical Engineering Communication,1979,18:81-85.
    [20].Pandu S,Rao R,Singh R P.Performance characteristics of single-stage steam jet ejectors using two simple model[J].Chemical Engineering Communication,1988,66:207-219.
    [21].Power R B.How to specify,evaluate and operate steam-jet air ejectors,part 1:specification[J].Hydrocarbon Processing and Petroleum Refiner,1964,43(2):121-126.
    [22].Power R B.How to specify,evaluate and operate steam-jet air ejectors,part 2:evaluation[J].Hydrocarbon Processing and Petroleum Refiner,1964,43(3):138-142.
    [23].Power R B.How to specify,evaluate and operate steam-jet air ejectors,part 3:operation[J].Hydrocarbon Processing and Petroleum Refiner,1964,43(4):149-152.
    [24].Ludwig E E.Applied process design for and petrochemical plants[J].The Chmical Engineering Communication,1977,1:52-58.
    [25].王权,向雄彪.蒸汽喷射压缩器喷射系数计算方法研究[J].太阳能学报,1997,18(3):314-321.
    [26].徐海涛,桑芝富.蒸汽喷射器喷射系数计算的热力学模型[J].化工学报,2004,55(5):704-710.
    [27].Luk T,Kou H S,Lan T H.Geometrically and thermerally non-optimum ejector heat pump analysis[J].Energy Conversation and Management,1993,34(12):1287-1297.
    [28].Coff A,Coogan C H.Some two dimensional aspects of the ejector problem[J].ASME Journal of Applied Mechanics,1942,9(4):A151-154.
    [29].Mikhail S.Mixing of coaxial streams inside a closed conduct[J].Journal of Mechanical Engineering Science,1960,2(1):59-68.
    [30].Hedges K R,Hill P G.Compressible flow ejectors,part Ⅰ-Development of a finite-difference flow model[J].ASME Journal of Fluids Engineering,1974,96:272-281.
    [31].Hedges K R,Hill P G.Compressible flow ejectors,part Ⅱ-Flow field measurements and analysis[J].ASME Journal of Fluids Engineering,1974,96:282-288.
    [32].徐海涛.蒸汽喷射器的理论及数值模拟:[硕士学位论文].南京:南京工业大学机械与动力工程学院,2003.
    [33].刘志强,沈胜强.蒸汽喷射式热泵性能实验研究[J].大连理工大学学报,2001,41(3):67-72.
    [34].Matsuo K,Sasaguchi K.Investigation of supersonic air ejectors,part Ⅰ:performance in the case of zero-secondary flow[J].Bulletin of JSME,1981,24(198):2090-2097.
    [35].Matsuo K,Sasaguchi K.Investigation of supersonic air ejectors,part Ⅱ:effects of throat-area-ratio on ejector performance[J].Bulletin of JSME,1982,25(210):1898-1905.
    [36].Nahdi E,Champoussin J C,Hostache G,et al.Optimum geometric parameters of a cooling ejector-compressor[J].International Journal of Refrigeration,1993,16(1):67-72.
    [37].Chang Y J,Chen Y M.Enhancement of a steam-jet refrigerator using a novel application of the petal nozzle[J].Experimental Thermal and Fluid Science,2000,22:203-211.
    [38].Desevaux P.A method for visualizing the mixing zone between two co-axial flows in an ejector[J].Optics and Lasers in Engineering,2001,35:317-323.
    [39].张于峰.一种新的制冷喷射器计算方法[J].工程热物理学报,1997,17(5):27-30.
    [40].孙洲阳,徐光备,由世俊等.复合喷射制冷循环及其新技术[J].暖通空调,2003,33(4):118-121.
    [41].王小林,瞿建国.供热系统中应用蒸汽喷射压缩器的可行性研究[J].能源研究与利用,2003,13(2):39-42.
    [42].陆东宏,陆宏圻,王云祥等.新型可调脱碳喷射器的开发及应用[J].化工进展,2002,21(8):596-598.
    [43].刑桂菊,李文忠.固定结构的气体喷射器效率研究[J].热能动力工程,2000,15(9):467-469.
    [44].张少维,徐海涛,桑芝富.新型喷嘴结构下蒸汽喷射式热泵性能的数值研究[J].热能动力工程,2004,19(5):506-509.
    [45].沈胜强,李素芬,夏远景.喷射式热泵的设计计算与性能分析[J].大连理工大学学报,1998,38(5):558-561.
    [46].李海军,沈胜强.蒸汽喷射制冷系统中喷射器内特殊流动现象的研究[J].工程热物理学报,2006,27(3):454-456.
    [47].季建刚,王如竹,黎立新.蒸汽喷射压缩器特性计算与分析[J].船舶工程,2006,28(5):46-49.
    [48].季建刚,黎立新,王如竹.蒸汽喷射压缩器的变工况特性分析[J].化学工程,2007,35(2):68-71.
    [49].Somjin Disawas,Somchai Wongwises.Experimental investigation on the performance of the refrigeration cycle using a two-phase ejector as an expansion device[J].International Journal of Refrigeration,2004,27:587-594.
    [50].A.Selvaraju,A.Mani.Experimental investigation on R134a vapour ejector refrigeration system[J].International Journal of Refrigeration,2006,29:1160-1166.
    [51].Giuseppe Grazzini,Andrea Rocchetti.Influence of the objective function on the optimization of a steam ejector cycle[J].International Journal of Refrigeration,2008,31:510-515.
    [52].Gianfranco Angelino,Costante Invernizzi.Thermodynamic optimization of ejector actuated refrigerating cycles[J].International Journal of Refrigeration,2008,31:453-463.
    [53].Kou H S,Lan T H.Geometrically and thermally non-optimum ejector heat Pump analysis[J].Energy Convers,1993,34(12):1287-1297.
    [54].Kornhauser Chunnanond,Satha Aphornratana.An experimental investigation of a steam ejector refrigerator:the analysis of the pressure profile along the ejector[J].Applied Thermal Engineering,1992,(4):311-322.
    [55].苏跃红,葛新石.双温冰箱-一种节能循环的分析[J].流体机械,1996,10(2):56-58.
    [56].苏跃红,葛新石.双温冰箱压缩/喷射式混合制冷循环系统的设计和实验研究[J].中国科学技术大学学报,1998,28(2):115-120.
    [57].郭健翔,谭连城.新型压缩/喷射冰箱混合制冷循环及实验研究[J].制冷 学报,1993,6(1):10-14.
    [58].范晓伟,阴建民,陈钟颀.新型压缩/喷射制冷循环系统的实验研究[J].西安交通大学学报,1997,31(5):6-9.
    [59].刘敬辉,陈江平,陈芝久.压缩/喷射混合制冷循环喷射器喷嘴设计方法探讨[C].//中国制冷学会.上海市制冷学会2003年学术年会论文集.上海:中国制冷学会,2003:479-482.
    [60].曹立宏.冰箱压缩/喷射混合循环制冷性能的理论研究:[学士学位论文].长沙:中南大学能源科学与工程学院,2006.
    [61].徐海涛,桑芝富.蒸汽喷射器喷射系数计算的热力学模型[J].化工学报,2004,5(5):32-35.
    [62].刘敬辉,陈江平,陈芝久.压缩/喷射混合制冷循环喷射器喷嘴设计方法探讨[J].电气暖通,2004,2(8):75-77.
    [63].汉光机械厂水暖三结合小组.蒸汽喷射器计算[M].北京:国防工业出版社,1974:43-45,72.
    [64].中华人民共和国国家技术监督局.GB/T 8059.1-1995.家用制冷器具-冷藏箱.北京:中国标准出版社.2004.
    [65].Launder B E,Spalding D B.Lectures in Mathematical models of turbulent[M].England:Academic Press,1972:35-42.
    [66].Li X,Tankin R S.On the temporal instability of a two-dimensional viscous liquid sheet[J].Journal of Fluid Mechanics,1991,226:425-431.
    [67].Launder B E,Spalding D B.The numerical computation of turbulent flows[J].Computational Methods Applied to Mechanical Engineering,1974,3:269-289.
    [68].刘东.小型全封闭制冷压缩机[M].北京:科学出版社,1990,60-65.
    [69].刘益才,曹立宏.压缩机排气增压节能方法及装置.中国专利,200910042424.3(申请号),2009.1.6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700